| Step | Hyp | Ref | Expression | 
						
							| 0 |  | csmat | ⊢ subMat1 | 
						
							| 1 |  | vm | ⊢ 𝑚 | 
						
							| 2 |  | cvv | ⊢ V | 
						
							| 3 |  | vk | ⊢ 𝑘 | 
						
							| 4 |  | cn | ⊢ ℕ | 
						
							| 5 |  | vl | ⊢ 𝑙 | 
						
							| 6 | 1 | cv | ⊢ 𝑚 | 
						
							| 7 |  | vi | ⊢ 𝑖 | 
						
							| 8 |  | vj | ⊢ 𝑗 | 
						
							| 9 | 7 | cv | ⊢ 𝑖 | 
						
							| 10 |  | clt | ⊢  < | 
						
							| 11 | 3 | cv | ⊢ 𝑘 | 
						
							| 12 | 9 11 10 | wbr | ⊢ 𝑖  <  𝑘 | 
						
							| 13 |  | caddc | ⊢  + | 
						
							| 14 |  | c1 | ⊢ 1 | 
						
							| 15 | 9 14 13 | co | ⊢ ( 𝑖  +  1 ) | 
						
							| 16 | 12 9 15 | cif | ⊢ if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) | 
						
							| 17 | 8 | cv | ⊢ 𝑗 | 
						
							| 18 | 5 | cv | ⊢ 𝑙 | 
						
							| 19 | 17 18 10 | wbr | ⊢ 𝑗  <  𝑙 | 
						
							| 20 | 17 14 13 | co | ⊢ ( 𝑗  +  1 ) | 
						
							| 21 | 19 17 20 | cif | ⊢ if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) | 
						
							| 22 | 16 21 | cop | ⊢ 〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 | 
						
							| 23 | 7 8 4 4 22 | cmpo | ⊢ ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) | 
						
							| 24 | 6 23 | ccom | ⊢ ( 𝑚  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) | 
						
							| 25 | 3 5 4 4 24 | cmpo | ⊢ ( 𝑘  ∈  ℕ ,  𝑙  ∈  ℕ  ↦  ( 𝑚  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) ) | 
						
							| 26 | 1 2 25 | cmpt | ⊢ ( 𝑚  ∈  V  ↦  ( 𝑘  ∈  ℕ ,  𝑙  ∈  ℕ  ↦  ( 𝑚  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) ) ) | 
						
							| 27 | 0 26 | wceq | ⊢ subMat1  =  ( 𝑚  ∈  V  ↦  ( 𝑘  ∈  ℕ ,  𝑙  ∈  ℕ  ↦  ( 𝑚  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) ) ) |