| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elex | ⊢ ( 𝑀  ∈  𝑉  →  𝑀  ∈  V ) | 
						
							| 2 | 1 | 3ad2ant3 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐿  ∈  ℕ  ∧  𝑀  ∈  𝑉 )  →  𝑀  ∈  V ) | 
						
							| 3 |  | coeq1 | ⊢ ( 𝑚  =  𝑀  →  ( 𝑚  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) )  =  ( 𝑀  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) ) | 
						
							| 4 | 3 | mpoeq3dv | ⊢ ( 𝑚  =  𝑀  →  ( 𝑘  ∈  ℕ ,  𝑙  ∈  ℕ  ↦  ( 𝑚  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) )  =  ( 𝑘  ∈  ℕ ,  𝑙  ∈  ℕ  ↦  ( 𝑀  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) ) ) | 
						
							| 5 |  | df-smat | ⊢ subMat1  =  ( 𝑚  ∈  V  ↦  ( 𝑘  ∈  ℕ ,  𝑙  ∈  ℕ  ↦  ( 𝑚  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) ) ) | 
						
							| 6 |  | nnex | ⊢ ℕ  ∈  V | 
						
							| 7 | 6 6 | mpoex | ⊢ ( 𝑘  ∈  ℕ ,  𝑙  ∈  ℕ  ↦  ( 𝑀  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) )  ∈  V | 
						
							| 8 | 4 5 7 | fvmpt | ⊢ ( 𝑀  ∈  V  →  ( subMat1 ‘ 𝑀 )  =  ( 𝑘  ∈  ℕ ,  𝑙  ∈  ℕ  ↦  ( 𝑀  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) ) ) | 
						
							| 9 | 2 8 | syl | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐿  ∈  ℕ  ∧  𝑀  ∈  𝑉 )  →  ( subMat1 ‘ 𝑀 )  =  ( 𝑘  ∈  ℕ ,  𝑙  ∈  ℕ  ↦  ( 𝑀  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) ) ) | 
						
							| 10 |  | breq2 | ⊢ ( 𝑘  =  𝐾  →  ( 𝑖  <  𝑘  ↔  𝑖  <  𝐾 ) ) | 
						
							| 11 | 10 | ifbid | ⊢ ( 𝑘  =  𝐾  →  if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) )  =  if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ) | 
						
							| 12 | 11 | opeq1d | ⊢ ( 𝑘  =  𝐾  →  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉  =  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) | 
						
							| 13 | 12 | mpoeq3dv | ⊢ ( 𝑘  =  𝐾  →  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 )  =  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) | 
						
							| 14 |  | breq2 | ⊢ ( 𝑙  =  𝐿  →  ( 𝑗  <  𝑙  ↔  𝑗  <  𝐿 ) ) | 
						
							| 15 | 14 | ifbid | ⊢ ( 𝑙  =  𝐿  →  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) )  =  if ( 𝑗  <  𝐿 ,  𝑗 ,  ( 𝑗  +  1 ) ) ) | 
						
							| 16 | 15 | opeq2d | ⊢ ( 𝑙  =  𝐿  →  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉  =  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝐿 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) | 
						
							| 17 | 16 | mpoeq3dv | ⊢ ( 𝑙  =  𝐿  →  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 )  =  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝐿 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) | 
						
							| 18 | 13 17 | sylan9eq | ⊢ ( ( 𝑘  =  𝐾  ∧  𝑙  =  𝐿 )  →  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 )  =  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝐿 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  𝐿  ∈  ℕ  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝑘  =  𝐾  ∧  𝑙  =  𝐿 ) )  →  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 )  =  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝐿 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) | 
						
							| 20 | 19 | coeq2d | ⊢ ( ( ( 𝐾  ∈  ℕ  ∧  𝐿  ∈  ℕ  ∧  𝑀  ∈  𝑉 )  ∧  ( 𝑘  =  𝐾  ∧  𝑙  =  𝐿 ) )  →  ( 𝑀  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝑘 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝑙 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) )  =  ( 𝑀  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝐿 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) ) | 
						
							| 21 |  | simp1 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐿  ∈  ℕ  ∧  𝑀  ∈  𝑉 )  →  𝐾  ∈  ℕ ) | 
						
							| 22 |  | simp2 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐿  ∈  ℕ  ∧  𝑀  ∈  𝑉 )  →  𝐿  ∈  ℕ ) | 
						
							| 23 |  | simp3 | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐿  ∈  ℕ  ∧  𝑀  ∈  𝑉 )  →  𝑀  ∈  𝑉 ) | 
						
							| 24 | 6 6 | mpoex | ⊢ ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝐿 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 )  ∈  V | 
						
							| 25 | 24 | a1i | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐿  ∈  ℕ  ∧  𝑀  ∈  𝑉 )  →  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝐿 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 )  ∈  V ) | 
						
							| 26 |  | coexg | ⊢ ( ( 𝑀  ∈  𝑉  ∧  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝐿 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 )  ∈  V )  →  ( 𝑀  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝐿 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) )  ∈  V ) | 
						
							| 27 | 23 25 26 | syl2anc | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐿  ∈  ℕ  ∧  𝑀  ∈  𝑉 )  →  ( 𝑀  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝐿 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) )  ∈  V ) | 
						
							| 28 | 9 20 21 22 27 | ovmpod | ⊢ ( ( 𝐾  ∈  ℕ  ∧  𝐿  ∈  ℕ  ∧  𝑀  ∈  𝑉 )  →  ( 𝐾 ( subMat1 ‘ 𝑀 ) 𝐿 )  =  ( 𝑀  ∘  ( 𝑖  ∈  ℕ ,  𝑗  ∈  ℕ  ↦  〈 if ( 𝑖  <  𝐾 ,  𝑖 ,  ( 𝑖  +  1 ) ) ,  if ( 𝑗  <  𝐿 ,  𝑗 ,  ( 𝑗  +  1 ) ) 〉 ) ) ) |