| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝑀 ∈ 𝑉 → 𝑀 ∈ V ) |
| 2 |
1
|
3ad2ant3 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉 ) → 𝑀 ∈ V ) |
| 3 |
|
coeq1 |
⊢ ( 𝑚 = 𝑀 → ( 𝑚 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝑘 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) = ( 𝑀 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝑘 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ) |
| 4 |
3
|
mpoeq3dv |
⊢ ( 𝑚 = 𝑀 → ( 𝑘 ∈ ℕ , 𝑙 ∈ ℕ ↦ ( 𝑚 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝑘 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ) = ( 𝑘 ∈ ℕ , 𝑙 ∈ ℕ ↦ ( 𝑀 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝑘 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ) ) |
| 5 |
|
df-smat |
⊢ subMat1 = ( 𝑚 ∈ V ↦ ( 𝑘 ∈ ℕ , 𝑙 ∈ ℕ ↦ ( 𝑚 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝑘 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ) ) |
| 6 |
|
nnex |
⊢ ℕ ∈ V |
| 7 |
6 6
|
mpoex |
⊢ ( 𝑘 ∈ ℕ , 𝑙 ∈ ℕ ↦ ( 𝑀 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝑘 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ) ∈ V |
| 8 |
4 5 7
|
fvmpt |
⊢ ( 𝑀 ∈ V → ( subMat1 ‘ 𝑀 ) = ( 𝑘 ∈ ℕ , 𝑙 ∈ ℕ ↦ ( 𝑀 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝑘 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ) ) |
| 9 |
2 8
|
syl |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉 ) → ( subMat1 ‘ 𝑀 ) = ( 𝑘 ∈ ℕ , 𝑙 ∈ ℕ ↦ ( 𝑀 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝑘 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ) ) |
| 10 |
|
breq2 |
⊢ ( 𝑘 = 𝐾 → ( 𝑖 < 𝑘 ↔ 𝑖 < 𝐾 ) ) |
| 11 |
10
|
ifbid |
⊢ ( 𝑘 = 𝐾 → if ( 𝑖 < 𝑘 , 𝑖 , ( 𝑖 + 1 ) ) = if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) ) |
| 12 |
11
|
opeq1d |
⊢ ( 𝑘 = 𝐾 → 〈 if ( 𝑖 < 𝑘 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 = 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) |
| 13 |
12
|
mpoeq3dv |
⊢ ( 𝑘 = 𝐾 → ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝑘 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) = ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) |
| 14 |
|
breq2 |
⊢ ( 𝑙 = 𝐿 → ( 𝑗 < 𝑙 ↔ 𝑗 < 𝐿 ) ) |
| 15 |
14
|
ifbid |
⊢ ( 𝑙 = 𝐿 → if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) = if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) ) |
| 16 |
15
|
opeq2d |
⊢ ( 𝑙 = 𝐿 → 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 = 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) |
| 17 |
16
|
mpoeq3dv |
⊢ ( 𝑙 = 𝐿 → ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) = ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) |
| 18 |
13 17
|
sylan9eq |
⊢ ( ( 𝑘 = 𝐾 ∧ 𝑙 = 𝐿 ) → ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝑘 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) = ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) |
| 19 |
18
|
adantl |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝑘 = 𝐾 ∧ 𝑙 = 𝐿 ) ) → ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝑘 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) = ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) |
| 20 |
19
|
coeq2d |
⊢ ( ( ( 𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉 ) ∧ ( 𝑘 = 𝐾 ∧ 𝑙 = 𝐿 ) ) → ( 𝑀 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝑘 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝑙 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) = ( 𝑀 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ) |
| 21 |
|
simp1 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉 ) → 𝐾 ∈ ℕ ) |
| 22 |
|
simp2 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉 ) → 𝐿 ∈ ℕ ) |
| 23 |
|
simp3 |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉 ) → 𝑀 ∈ 𝑉 ) |
| 24 |
6 6
|
mpoex |
⊢ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ∈ V |
| 25 |
24
|
a1i |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉 ) → ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ∈ V ) |
| 26 |
|
coexg |
⊢ ( ( 𝑀 ∈ 𝑉 ∧ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ∈ V ) → ( 𝑀 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ∈ V ) |
| 27 |
23 25 26
|
syl2anc |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉 ) → ( 𝑀 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ∈ V ) |
| 28 |
9 20 21 22 27
|
ovmpod |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝑀 ∈ 𝑉 ) → ( 𝐾 ( subMat1 ‘ 𝑀 ) 𝐿 ) = ( 𝑀 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ) |