Metamath Proof Explorer


Theorem smatfval

Description: Value of the submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Assertion smatfval K L M V K subMat 1 M L = M i , j if i < K i i + 1 if j < L j j + 1

Proof

Step Hyp Ref Expression
1 elex M V M V
2 1 3ad2ant3 K L M V M V
3 coeq1 m = M m i , j if i < k i i + 1 if j < l j j + 1 = M i , j if i < k i i + 1 if j < l j j + 1
4 3 mpoeq3dv m = M k , l m i , j if i < k i i + 1 if j < l j j + 1 = k , l M i , j if i < k i i + 1 if j < l j j + 1
5 df-smat subMat 1 = m V k , l m i , j if i < k i i + 1 if j < l j j + 1
6 nnex V
7 6 6 mpoex k , l M i , j if i < k i i + 1 if j < l j j + 1 V
8 4 5 7 fvmpt M V subMat 1 M = k , l M i , j if i < k i i + 1 if j < l j j + 1
9 2 8 syl K L M V subMat 1 M = k , l M i , j if i < k i i + 1 if j < l j j + 1
10 breq2 k = K i < k i < K
11 10 ifbid k = K if i < k i i + 1 = if i < K i i + 1
12 11 opeq1d k = K if i < k i i + 1 if j < l j j + 1 = if i < K i i + 1 if j < l j j + 1
13 12 mpoeq3dv k = K i , j if i < k i i + 1 if j < l j j + 1 = i , j if i < K i i + 1 if j < l j j + 1
14 breq2 l = L j < l j < L
15 14 ifbid l = L if j < l j j + 1 = if j < L j j + 1
16 15 opeq2d l = L if i < K i i + 1 if j < l j j + 1 = if i < K i i + 1 if j < L j j + 1
17 16 mpoeq3dv l = L i , j if i < K i i + 1 if j < l j j + 1 = i , j if i < K i i + 1 if j < L j j + 1
18 13 17 sylan9eq k = K l = L i , j if i < k i i + 1 if j < l j j + 1 = i , j if i < K i i + 1 if j < L j j + 1
19 18 adantl K L M V k = K l = L i , j if i < k i i + 1 if j < l j j + 1 = i , j if i < K i i + 1 if j < L j j + 1
20 19 coeq2d K L M V k = K l = L M i , j if i < k i i + 1 if j < l j j + 1 = M i , j if i < K i i + 1 if j < L j j + 1
21 simp1 K L M V K
22 simp2 K L M V L
23 simp3 K L M V M V
24 6 6 mpoex i , j if i < K i i + 1 if j < L j j + 1 V
25 24 a1i K L M V i , j if i < K i i + 1 if j < L j j + 1 V
26 coexg M V i , j if i < K i i + 1 if j < L j j + 1 V M i , j if i < K i i + 1 if j < L j j + 1 V
27 23 25 26 syl2anc K L M V M i , j if i < K i i + 1 if j < L j j + 1 V
28 9 20 21 22 27 ovmpod K L M V K subMat 1 M L = M i , j if i < K i i + 1 if j < L j j + 1