Metamath Proof Explorer


Theorem smatrcl

Description: Closure of the rectangular submatrix. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s S = K subMat 1 A L
smat.m φ M
smat.n φ N
smat.k φ K 1 M
smat.l φ L 1 N
smat.a φ A B 1 M × 1 N
Assertion smatrcl φ S B 1 M 1 × 1 N 1

Proof

Step Hyp Ref Expression
1 smat.s S = K subMat 1 A L
2 smat.m φ M
3 smat.n φ N
4 smat.k φ K 1 M
5 smat.l φ L 1 N
6 smat.a φ A B 1 M × 1 N
7 elmapi A B 1 M × 1 N A : 1 M × 1 N B
8 ffun A : 1 M × 1 N B Fun A
9 6 7 8 3syl φ Fun A
10 eqid i , j if i < K i i + 1 if j < L j j + 1 = i , j if i < K i i + 1 if j < L j j + 1
11 10 mpofun Fun i , j if i < K i i + 1 if j < L j j + 1
12 11 a1i φ Fun i , j if i < K i i + 1 if j < L j j + 1
13 funco Fun A Fun i , j if i < K i i + 1 if j < L j j + 1 Fun A i , j if i < K i i + 1 if j < L j j + 1
14 9 12 13 syl2anc φ Fun A i , j if i < K i i + 1 if j < L j j + 1
15 fz1ssnn 1 M
16 15 4 sselid φ K
17 fz1ssnn 1 N
18 17 5 sselid φ L
19 smatfval K L A B 1 M × 1 N K subMat 1 A L = A i , j if i < K i i + 1 if j < L j j + 1
20 16 18 6 19 syl3anc φ K subMat 1 A L = A i , j if i < K i i + 1 if j < L j j + 1
21 1 20 eqtrid φ S = A i , j if i < K i i + 1 if j < L j j + 1
22 21 funeqd φ Fun S Fun A i , j if i < K i i + 1 if j < L j j + 1
23 14 22 mpbird φ Fun S
24 fdmrn Fun S S : dom S ran S
25 23 24 sylib φ S : dom S ran S
26 21 dmeqd φ dom S = dom A i , j if i < K i i + 1 if j < L j j + 1
27 dmco dom A i , j if i < K i i + 1 if j < L j j + 1 = i , j if i < K i i + 1 if j < L j j + 1 -1 dom A
28 fdm A : 1 M × 1 N B dom A = 1 M × 1 N
29 6 7 28 3syl φ dom A = 1 M × 1 N
30 29 imaeq2d φ i , j if i < K i i + 1 if j < L j j + 1 -1 dom A = i , j if i < K i i + 1 if j < L j j + 1 -1 1 M × 1 N
31 30 eleq2d φ x i , j if i < K i i + 1 if j < L j j + 1 -1 dom A x i , j if i < K i i + 1 if j < L j j + 1 -1 1 M × 1 N
32 opex if i < K i i + 1 if j < L j j + 1 V
33 10 32 fnmpoi i , j if i < K i i + 1 if j < L j j + 1 Fn ×
34 elpreima i , j if i < K i i + 1 if j < L j j + 1 Fn × x i , j if i < K i i + 1 if j < L j j + 1 -1 1 M × 1 N x × i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N
35 33 34 ax-mp x i , j if i < K i i + 1 if j < L j j + 1 -1 1 M × 1 N x × i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N
36 35 a1i φ x i , j if i < K i i + 1 if j < L j j + 1 -1 1 M × 1 N x × i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N
37 simplr φ x = 1 st x 2 nd x 1 st x 2 nd x x = 1 st x 2 nd x
38 37 fveq2d φ x = 1 st x 2 nd x 1 st x 2 nd x i , j if i < K i i + 1 if j < L j j + 1 x = i , j if i < K i i + 1 if j < L j j + 1 1 st x 2 nd x
39 df-ov 1 st x i , j if i < K i i + 1 if j < L j j + 1 2 nd x = i , j if i < K i i + 1 if j < L j j + 1 1 st x 2 nd x
40 38 39 eqtr4di φ x = 1 st x 2 nd x 1 st x 2 nd x i , j if i < K i i + 1 if j < L j j + 1 x = 1 st x i , j if i < K i i + 1 if j < L j j + 1 2 nd x
41 breq1 i = 1 st x i < K 1 st x < K
42 id i = 1 st x i = 1 st x
43 oveq1 i = 1 st x i + 1 = 1 st x + 1
44 41 42 43 ifbieq12d i = 1 st x if i < K i i + 1 = if 1 st x < K 1 st x 1 st x + 1
45 44 opeq1d i = 1 st x if i < K i i + 1 if j < L j j + 1 = if 1 st x < K 1 st x 1 st x + 1 if j < L j j + 1
46 breq1 j = 2 nd x j < L 2 nd x < L
47 id j = 2 nd x j = 2 nd x
48 oveq1 j = 2 nd x j + 1 = 2 nd x + 1
49 46 47 48 ifbieq12d j = 2 nd x if j < L j j + 1 = if 2 nd x < L 2 nd x 2 nd x + 1
50 49 opeq2d j = 2 nd x if 1 st x < K 1 st x 1 st x + 1 if j < L j j + 1 = if 1 st x < K 1 st x 1 st x + 1 if 2 nd x < L 2 nd x 2 nd x + 1
51 opex if 1 st x < K 1 st x 1 st x + 1 if 2 nd x < L 2 nd x 2 nd x + 1 V
52 45 50 10 51 ovmpo 1 st x 2 nd x 1 st x i , j if i < K i i + 1 if j < L j j + 1 2 nd x = if 1 st x < K 1 st x 1 st x + 1 if 2 nd x < L 2 nd x 2 nd x + 1
53 52 adantl φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x i , j if i < K i i + 1 if j < L j j + 1 2 nd x = if 1 st x < K 1 st x 1 st x + 1 if 2 nd x < L 2 nd x 2 nd x + 1
54 40 53 eqtrd φ x = 1 st x 2 nd x 1 st x 2 nd x i , j if i < K i i + 1 if j < L j j + 1 x = if 1 st x < K 1 st x 1 st x + 1 if 2 nd x < L 2 nd x 2 nd x + 1
55 54 eleq1d φ x = 1 st x 2 nd x 1 st x 2 nd x i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N if 1 st x < K 1 st x 1 st x + 1 if 2 nd x < L 2 nd x 2 nd x + 1 1 M × 1 N
56 opelxp if 1 st x < K 1 st x 1 st x + 1 if 2 nd x < L 2 nd x 2 nd x + 1 1 M × 1 N if 1 st x < K 1 st x 1 st x + 1 1 M if 2 nd x < L 2 nd x 2 nd x + 1 1 N
57 55 56 bitrdi φ x = 1 st x 2 nd x 1 st x 2 nd x i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N if 1 st x < K 1 st x 1 st x + 1 1 M if 2 nd x < L 2 nd x 2 nd x + 1 1 N
58 ifel if 1 st x < K 1 st x 1 st x + 1 1 M 1 st x < K 1 st x 1 M ¬ 1 st x < K 1 st x + 1 1 M
59 simplrl φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x
60 59 nnred φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x
61 16 nnred φ K
62 61 ad3antrrr φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K K
63 2 nnred φ M
64 63 ad3antrrr φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K M
65 simpr φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x < K
66 60 62 65 ltled φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x K
67 elfzle2 K 1 M K M
68 4 67 syl φ K M
69 68 ad3antrrr φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K K M
70 60 62 64 66 69 letrd φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x M
71 59 70 jca φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x 1 st x M
72 2 nnzd φ M
73 fznn M 1 st x 1 M 1 st x 1 st x M
74 72 73 syl φ 1 st x 1 M 1 st x 1 st x M
75 74 ad3antrrr φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x 1 M 1 st x 1 st x M
76 71 75 mpbird φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x 1 M
77 60 62 64 65 69 ltletrd φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x < M
78 2 ad3antrrr φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K M
79 nnltlem1 1 st x M 1 st x < M 1 st x M 1
80 59 78 79 syl2anc φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x < M 1 st x M 1
81 77 80 mpbid φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x M 1
82 76 81 2thd φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x 1 M 1 st x M 1
83 82 pm5.32da φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x 1 M 1 st x < K 1 st x M 1
84 fznn M 1 st x + 1 1 M 1 st x + 1 1 st x + 1 M
85 72 84 syl φ 1 st x + 1 1 M 1 st x + 1 1 st x + 1 M
86 85 ad2antrr φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x + 1 1 M 1 st x + 1 1 st x + 1 M
87 simprl φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x
88 87 peano2nnd φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x + 1
89 88 biantrurd φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x + 1 M 1 st x + 1 1 st x + 1 M
90 87 nnzd φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x
91 72 ad2antrr φ x = 1 st x 2 nd x 1 st x 2 nd x M
92 zltp1le 1 st x M 1 st x < M 1 st x + 1 M
93 zltlem1 1 st x M 1 st x < M 1 st x M 1
94 92 93 bitr3d 1 st x M 1 st x + 1 M 1 st x M 1
95 90 91 94 syl2anc φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x + 1 M 1 st x M 1
96 86 89 95 3bitr2d φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x + 1 1 M 1 st x M 1
97 96 anbi2d φ x = 1 st x 2 nd x 1 st x 2 nd x ¬ 1 st x < K 1 st x + 1 1 M ¬ 1 st x < K 1 st x M 1
98 83 97 orbi12d φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x 1 M ¬ 1 st x < K 1 st x + 1 1 M 1 st x < K 1 st x M 1 ¬ 1 st x < K 1 st x M 1
99 pm4.42 1 st x M 1 1 st x M 1 1 st x < K 1 st x M 1 ¬ 1 st x < K
100 ancom 1 st x M 1 1 st x < K 1 st x < K 1 st x M 1
101 ancom 1 st x M 1 ¬ 1 st x < K ¬ 1 st x < K 1 st x M 1
102 100 101 orbi12i 1 st x M 1 1 st x < K 1 st x M 1 ¬ 1 st x < K 1 st x < K 1 st x M 1 ¬ 1 st x < K 1 st x M 1
103 99 102 bitri 1 st x M 1 1 st x < K 1 st x M 1 ¬ 1 st x < K 1 st x M 1
104 98 103 bitr4di φ x = 1 st x 2 nd x 1 st x 2 nd x 1 st x < K 1 st x 1 M ¬ 1 st x < K 1 st x + 1 1 M 1 st x M 1
105 58 104 syl5bb φ x = 1 st x 2 nd x 1 st x 2 nd x if 1 st x < K 1 st x 1 st x + 1 1 M 1 st x M 1
106 ifel if 2 nd x < L 2 nd x 2 nd x + 1 1 N 2 nd x < L 2 nd x 1 N ¬ 2 nd x < L 2 nd x + 1 1 N
107 simplrr φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x
108 107 nnred φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x
109 18 nnred φ L
110 109 ad3antrrr φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L L
111 3 nnred φ N
112 111 ad3antrrr φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L N
113 simpr φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x < L
114 108 110 113 ltled φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x L
115 elfzle2 L 1 N L N
116 5 115 syl φ L N
117 116 ad3antrrr φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L L N
118 108 110 112 114 117 letrd φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x N
119 107 118 jca φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x 2 nd x N
120 3 nnzd φ N
121 fznn N 2 nd x 1 N 2 nd x 2 nd x N
122 120 121 syl φ 2 nd x 1 N 2 nd x 2 nd x N
123 122 ad3antrrr φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x 1 N 2 nd x 2 nd x N
124 119 123 mpbird φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x 1 N
125 108 110 112 113 117 ltletrd φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x < N
126 3 ad3antrrr φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L N
127 nnltlem1 2 nd x N 2 nd x < N 2 nd x N 1
128 107 126 127 syl2anc φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x < N 2 nd x N 1
129 125 128 mpbid φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x N 1
130 124 129 2thd φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x 1 N 2 nd x N 1
131 130 pm5.32da φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x 1 N 2 nd x < L 2 nd x N 1
132 fznn N 2 nd x + 1 1 N 2 nd x + 1 2 nd x + 1 N
133 120 132 syl φ 2 nd x + 1 1 N 2 nd x + 1 2 nd x + 1 N
134 133 ad2antrr φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x + 1 1 N 2 nd x + 1 2 nd x + 1 N
135 simprr φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x
136 135 peano2nnd φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x + 1
137 136 biantrurd φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x + 1 N 2 nd x + 1 2 nd x + 1 N
138 135 nnzd φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x
139 120 ad2antrr φ x = 1 st x 2 nd x 1 st x 2 nd x N
140 zltp1le 2 nd x N 2 nd x < N 2 nd x + 1 N
141 zltlem1 2 nd x N 2 nd x < N 2 nd x N 1
142 140 141 bitr3d 2 nd x N 2 nd x + 1 N 2 nd x N 1
143 138 139 142 syl2anc φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x + 1 N 2 nd x N 1
144 134 137 143 3bitr2d φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x + 1 1 N 2 nd x N 1
145 144 anbi2d φ x = 1 st x 2 nd x 1 st x 2 nd x ¬ 2 nd x < L 2 nd x + 1 1 N ¬ 2 nd x < L 2 nd x N 1
146 131 145 orbi12d φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x 1 N ¬ 2 nd x < L 2 nd x + 1 1 N 2 nd x < L 2 nd x N 1 ¬ 2 nd x < L 2 nd x N 1
147 pm4.42 2 nd x N 1 2 nd x N 1 2 nd x < L 2 nd x N 1 ¬ 2 nd x < L
148 ancom 2 nd x N 1 2 nd x < L 2 nd x < L 2 nd x N 1
149 ancom 2 nd x N 1 ¬ 2 nd x < L ¬ 2 nd x < L 2 nd x N 1
150 148 149 orbi12i 2 nd x N 1 2 nd x < L 2 nd x N 1 ¬ 2 nd x < L 2 nd x < L 2 nd x N 1 ¬ 2 nd x < L 2 nd x N 1
151 147 150 bitri 2 nd x N 1 2 nd x < L 2 nd x N 1 ¬ 2 nd x < L 2 nd x N 1
152 146 151 bitr4di φ x = 1 st x 2 nd x 1 st x 2 nd x 2 nd x < L 2 nd x 1 N ¬ 2 nd x < L 2 nd x + 1 1 N 2 nd x N 1
153 106 152 syl5bb φ x = 1 st x 2 nd x 1 st x 2 nd x if 2 nd x < L 2 nd x 2 nd x + 1 1 N 2 nd x N 1
154 105 153 anbi12d φ x = 1 st x 2 nd x 1 st x 2 nd x if 1 st x < K 1 st x 1 st x + 1 1 M if 2 nd x < L 2 nd x 2 nd x + 1 1 N 1 st x M 1 2 nd x N 1
155 57 154 bitrd φ x = 1 st x 2 nd x 1 st x 2 nd x i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N 1 st x M 1 2 nd x N 1
156 155 pm5.32da φ x = 1 st x 2 nd x 1 st x 2 nd x i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N 1 st x 2 nd x 1 st x M 1 2 nd x N 1
157 1zzd φ 1
158 72 157 zsubcld φ M 1
159 fznn M 1 1 st x 1 M 1 1 st x 1 st x M 1
160 158 159 syl φ 1 st x 1 M 1 1 st x 1 st x M 1
161 120 157 zsubcld φ N 1
162 fznn N 1 2 nd x 1 N 1 2 nd x 2 nd x N 1
163 161 162 syl φ 2 nd x 1 N 1 2 nd x 2 nd x N 1
164 160 163 anbi12d φ 1 st x 1 M 1 2 nd x 1 N 1 1 st x 1 st x M 1 2 nd x 2 nd x N 1
165 an4 1 st x 1 st x M 1 2 nd x 2 nd x N 1 1 st x 2 nd x 1 st x M 1 2 nd x N 1
166 164 165 bitrdi φ 1 st x 1 M 1 2 nd x 1 N 1 1 st x 2 nd x 1 st x M 1 2 nd x N 1
167 166 adantr φ x = 1 st x 2 nd x 1 st x 1 M 1 2 nd x 1 N 1 1 st x 2 nd x 1 st x M 1 2 nd x N 1
168 156 167 bitr4d φ x = 1 st x 2 nd x 1 st x 2 nd x i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N 1 st x 1 M 1 2 nd x 1 N 1
169 168 pm5.32da φ x = 1 st x 2 nd x 1 st x 2 nd x i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N x = 1 st x 2 nd x 1 st x 1 M 1 2 nd x 1 N 1
170 elxp6 x × x = 1 st x 2 nd x 1 st x 2 nd x
171 170 anbi1i x × i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N x = 1 st x 2 nd x 1 st x 2 nd x i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N
172 anass x = 1 st x 2 nd x 1 st x 2 nd x i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N x = 1 st x 2 nd x 1 st x 2 nd x i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N
173 171 172 bitri x × i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N x = 1 st x 2 nd x 1 st x 2 nd x i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N
174 elxp6 x 1 M 1 × 1 N 1 x = 1 st x 2 nd x 1 st x 1 M 1 2 nd x 1 N 1
175 169 173 174 3bitr4g φ x × i , j if i < K i i + 1 if j < L j j + 1 x 1 M × 1 N x 1 M 1 × 1 N 1
176 31 36 175 3bitrd φ x i , j if i < K i i + 1 if j < L j j + 1 -1 dom A x 1 M 1 × 1 N 1
177 176 eqrdv φ i , j if i < K i i + 1 if j < L j j + 1 -1 dom A = 1 M 1 × 1 N 1
178 27 177 eqtrid φ dom A i , j if i < K i i + 1 if j < L j j + 1 = 1 M 1 × 1 N 1
179 26 178 eqtrd φ dom S = 1 M 1 × 1 N 1
180 179 feq2d φ S : dom S ran S S : 1 M 1 × 1 N 1 ran S
181 25 180 mpbid φ S : 1 M 1 × 1 N 1 ran S
182 21 rneqd φ ran S = ran A i , j if i < K i i + 1 if j < L j j + 1
183 rncoss ran A i , j if i < K i i + 1 if j < L j j + 1 ran A
184 182 183 eqsstrdi φ ran S ran A
185 frn A : 1 M × 1 N B ran A B
186 6 7 185 3syl φ ran A B
187 184 186 sstrd φ ran S B
188 fss S : 1 M 1 × 1 N 1 ran S ran S B S : 1 M 1 × 1 N 1 B
189 181 187 188 syl2anc φ S : 1 M 1 × 1 N 1 B
190 reldmmap Rel dom 𝑚
191 190 ovrcl A B 1 M × 1 N B V 1 M × 1 N V
192 6 191 syl φ B V 1 M × 1 N V
193 192 simpld φ B V
194 ovex 1 M 1 V
195 ovex 1 N 1 V
196 194 195 xpex 1 M 1 × 1 N 1 V
197 elmapg B V 1 M 1 × 1 N 1 V S B 1 M 1 × 1 N 1 S : 1 M 1 × 1 N 1 B
198 193 196 197 sylancl φ S B 1 M 1 × 1 N 1 S : 1 M 1 × 1 N 1 B
199 189 198 mpbird φ S B 1 M 1 × 1 N 1