Metamath Proof Explorer


Theorem smatlem

Description: Lemma for the next theorems. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s S = K subMat 1 A L
smat.m φ M
smat.n φ N
smat.k φ K 1 M
smat.l φ L 1 N
smat.a φ A B 1 M × 1 N
smatlem.i φ I
smatlem.j φ J
smatlem.1 φ if I < K I I + 1 = X
smatlem.2 φ if J < L J J + 1 = Y
Assertion smatlem φ I S J = X A Y

Proof

Step Hyp Ref Expression
1 smat.s S = K subMat 1 A L
2 smat.m φ M
3 smat.n φ N
4 smat.k φ K 1 M
5 smat.l φ L 1 N
6 smat.a φ A B 1 M × 1 N
7 smatlem.i φ I
8 smatlem.j φ J
9 smatlem.1 φ if I < K I I + 1 = X
10 smatlem.2 φ if J < L J J + 1 = Y
11 fz1ssnn 1 M
12 11 4 sselid φ K
13 fz1ssnn 1 N
14 13 5 sselid φ L
15 smatfval K L A B 1 M × 1 N K subMat 1 A L = A i , j if i < K i i + 1 if j < L j j + 1
16 12 14 6 15 syl3anc φ K subMat 1 A L = A i , j if i < K i i + 1 if j < L j j + 1
17 1 16 eqtrid φ S = A i , j if i < K i i + 1 if j < L j j + 1
18 17 oveqd φ I S J = I A i , j if i < K i i + 1 if j < L j j + 1 J
19 df-ov I A i , j if i < K i i + 1 if j < L j j + 1 J = A i , j if i < K i i + 1 if j < L j j + 1 I J
20 18 19 eqtrdi φ I S J = A i , j if i < K i i + 1 if j < L j j + 1 I J
21 7 8 jca φ I J
22 opelxp I J × I J
23 21 22 sylibr φ I J ×
24 eqid i , j if i < K i i + 1 if j < L j j + 1 = i , j if i < K i i + 1 if j < L j j + 1
25 opex if i < K i i + 1 if j < L j j + 1 V
26 24 25 dmmpo dom i , j if i < K i i + 1 if j < L j j + 1 = ×
27 23 26 eleqtrrdi φ I J dom i , j if i < K i i + 1 if j < L j j + 1
28 24 mpofun Fun i , j if i < K i i + 1 if j < L j j + 1
29 fvco Fun i , j if i < K i i + 1 if j < L j j + 1 I J dom i , j if i < K i i + 1 if j < L j j + 1 A i , j if i < K i i + 1 if j < L j j + 1 I J = A i , j if i < K i i + 1 if j < L j j + 1 I J
30 28 29 mpan I J dom i , j if i < K i i + 1 if j < L j j + 1 A i , j if i < K i i + 1 if j < L j j + 1 I J = A i , j if i < K i i + 1 if j < L j j + 1 I J
31 27 30 syl φ A i , j if i < K i i + 1 if j < L j j + 1 I J = A i , j if i < K i i + 1 if j < L j j + 1 I J
32 20 31 eqtrd φ I S J = A i , j if i < K i i + 1 if j < L j j + 1 I J
33 df-ov I i , j if i < K i i + 1 if j < L j j + 1 J = i , j if i < K i i + 1 if j < L j j + 1 I J
34 breq1 i = I i < K I < K
35 id i = I i = I
36 oveq1 i = I i + 1 = I + 1
37 34 35 36 ifbieq12d i = I if i < K i i + 1 = if I < K I I + 1
38 37 opeq1d i = I if i < K i i + 1 if j < L j j + 1 = if I < K I I + 1 if j < L j j + 1
39 breq1 j = J j < L J < L
40 id j = J j = J
41 oveq1 j = J j + 1 = J + 1
42 39 40 41 ifbieq12d j = J if j < L j j + 1 = if J < L J J + 1
43 42 opeq2d j = J if I < K I I + 1 if j < L j j + 1 = if I < K I I + 1 if J < L J J + 1
44 opex if I < K I I + 1 if J < L J J + 1 V
45 38 43 24 44 ovmpo I J I i , j if i < K i i + 1 if j < L j j + 1 J = if I < K I I + 1 if J < L J J + 1
46 21 45 syl φ I i , j if i < K i i + 1 if j < L j j + 1 J = if I < K I I + 1 if J < L J J + 1
47 9 10 opeq12d φ if I < K I I + 1 if J < L J J + 1 = X Y
48 46 47 eqtrd φ I i , j if i < K i i + 1 if j < L j j + 1 J = X Y
49 33 48 eqtr3id φ i , j if i < K i i + 1 if j < L j j + 1 I J = X Y
50 49 fveq2d φ A i , j if i < K i i + 1 if j < L j j + 1 I J = A X Y
51 df-ov X A Y = A X Y
52 50 51 eqtr4di φ A i , j if i < K i i + 1 if j < L j j + 1 I J = X A Y
53 32 52 eqtrd φ I S J = X A Y