Step |
Hyp |
Ref |
Expression |
1 |
|
smat.s |
⊢ 𝑆 = ( 𝐾 ( subMat1 ‘ 𝐴 ) 𝐿 ) |
2 |
|
smat.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
3 |
|
smat.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
4 |
|
smat.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 1 ... 𝑀 ) ) |
5 |
|
smat.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 1 ... 𝑁 ) ) |
6 |
|
smat.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 ↑m ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) ) |
7 |
|
smatlem.i |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
8 |
|
smatlem.j |
⊢ ( 𝜑 → 𝐽 ∈ ℕ ) |
9 |
|
smatlem.1 |
⊢ ( 𝜑 → if ( 𝐼 < 𝐾 , 𝐼 , ( 𝐼 + 1 ) ) = 𝑋 ) |
10 |
|
smatlem.2 |
⊢ ( 𝜑 → if ( 𝐽 < 𝐿 , 𝐽 , ( 𝐽 + 1 ) ) = 𝑌 ) |
11 |
|
fz1ssnn |
⊢ ( 1 ... 𝑀 ) ⊆ ℕ |
12 |
11 4
|
sselid |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
13 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
14 |
13 5
|
sselid |
⊢ ( 𝜑 → 𝐿 ∈ ℕ ) |
15 |
|
smatfval |
⊢ ( ( 𝐾 ∈ ℕ ∧ 𝐿 ∈ ℕ ∧ 𝐴 ∈ ( 𝐵 ↑m ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) ) → ( 𝐾 ( subMat1 ‘ 𝐴 ) 𝐿 ) = ( 𝐴 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ) |
16 |
12 14 6 15
|
syl3anc |
⊢ ( 𝜑 → ( 𝐾 ( subMat1 ‘ 𝐴 ) 𝐿 ) = ( 𝐴 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ) |
17 |
1 16
|
syl5eq |
⊢ ( 𝜑 → 𝑆 = ( 𝐴 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ) |
18 |
17
|
oveqd |
⊢ ( 𝜑 → ( 𝐼 𝑆 𝐽 ) = ( 𝐼 ( 𝐴 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) 𝐽 ) ) |
19 |
|
df-ov |
⊢ ( 𝐼 ( 𝐴 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) 𝐽 ) = ( ( 𝐴 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ‘ 〈 𝐼 , 𝐽 〉 ) |
20 |
18 19
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐼 𝑆 𝐽 ) = ( ( 𝐴 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ‘ 〈 𝐼 , 𝐽 〉 ) ) |
21 |
7 8
|
jca |
⊢ ( 𝜑 → ( 𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ ) ) |
22 |
|
opelxp |
⊢ ( 〈 𝐼 , 𝐽 〉 ∈ ( ℕ × ℕ ) ↔ ( 𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ ) ) |
23 |
21 22
|
sylibr |
⊢ ( 𝜑 → 〈 𝐼 , 𝐽 〉 ∈ ( ℕ × ℕ ) ) |
24 |
|
eqid |
⊢ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) = ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) |
25 |
|
opex |
⊢ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ∈ V |
26 |
24 25
|
dmmpo |
⊢ dom ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) = ( ℕ × ℕ ) |
27 |
23 26
|
eleqtrrdi |
⊢ ( 𝜑 → 〈 𝐼 , 𝐽 〉 ∈ dom ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) |
28 |
24
|
mpofun |
⊢ Fun ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) |
29 |
|
fvco |
⊢ ( ( Fun ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ∧ 〈 𝐼 , 𝐽 〉 ∈ dom ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) → ( ( 𝐴 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ‘ 〈 𝐼 , 𝐽 〉 ) = ( 𝐴 ‘ ( ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ‘ 〈 𝐼 , 𝐽 〉 ) ) ) |
30 |
28 29
|
mpan |
⊢ ( 〈 𝐼 , 𝐽 〉 ∈ dom ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) → ( ( 𝐴 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ‘ 〈 𝐼 , 𝐽 〉 ) = ( 𝐴 ‘ ( ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ‘ 〈 𝐼 , 𝐽 〉 ) ) ) |
31 |
27 30
|
syl |
⊢ ( 𝜑 → ( ( 𝐴 ∘ ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ) ‘ 〈 𝐼 , 𝐽 〉 ) = ( 𝐴 ‘ ( ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ‘ 〈 𝐼 , 𝐽 〉 ) ) ) |
32 |
20 31
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 𝑆 𝐽 ) = ( 𝐴 ‘ ( ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ‘ 〈 𝐼 , 𝐽 〉 ) ) ) |
33 |
|
df-ov |
⊢ ( 𝐼 ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) 𝐽 ) = ( ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ‘ 〈 𝐼 , 𝐽 〉 ) |
34 |
|
breq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 < 𝐾 ↔ 𝐼 < 𝐾 ) ) |
35 |
|
id |
⊢ ( 𝑖 = 𝐼 → 𝑖 = 𝐼 ) |
36 |
|
oveq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 + 1 ) = ( 𝐼 + 1 ) ) |
37 |
34 35 36
|
ifbieq12d |
⊢ ( 𝑖 = 𝐼 → if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) = if ( 𝐼 < 𝐾 , 𝐼 , ( 𝐼 + 1 ) ) ) |
38 |
37
|
opeq1d |
⊢ ( 𝑖 = 𝐼 → 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 = 〈 if ( 𝐼 < 𝐾 , 𝐼 , ( 𝐼 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) |
39 |
|
breq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 < 𝐿 ↔ 𝐽 < 𝐿 ) ) |
40 |
|
id |
⊢ ( 𝑗 = 𝐽 → 𝑗 = 𝐽 ) |
41 |
|
oveq1 |
⊢ ( 𝑗 = 𝐽 → ( 𝑗 + 1 ) = ( 𝐽 + 1 ) ) |
42 |
39 40 41
|
ifbieq12d |
⊢ ( 𝑗 = 𝐽 → if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) = if ( 𝐽 < 𝐿 , 𝐽 , ( 𝐽 + 1 ) ) ) |
43 |
42
|
opeq2d |
⊢ ( 𝑗 = 𝐽 → 〈 if ( 𝐼 < 𝐾 , 𝐼 , ( 𝐼 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 = 〈 if ( 𝐼 < 𝐾 , 𝐼 , ( 𝐼 + 1 ) ) , if ( 𝐽 < 𝐿 , 𝐽 , ( 𝐽 + 1 ) ) 〉 ) |
44 |
|
opex |
⊢ 〈 if ( 𝐼 < 𝐾 , 𝐼 , ( 𝐼 + 1 ) ) , if ( 𝐽 < 𝐿 , 𝐽 , ( 𝐽 + 1 ) ) 〉 ∈ V |
45 |
38 43 24 44
|
ovmpo |
⊢ ( ( 𝐼 ∈ ℕ ∧ 𝐽 ∈ ℕ ) → ( 𝐼 ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) 𝐽 ) = 〈 if ( 𝐼 < 𝐾 , 𝐼 , ( 𝐼 + 1 ) ) , if ( 𝐽 < 𝐿 , 𝐽 , ( 𝐽 + 1 ) ) 〉 ) |
46 |
21 45
|
syl |
⊢ ( 𝜑 → ( 𝐼 ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) 𝐽 ) = 〈 if ( 𝐼 < 𝐾 , 𝐼 , ( 𝐼 + 1 ) ) , if ( 𝐽 < 𝐿 , 𝐽 , ( 𝐽 + 1 ) ) 〉 ) |
47 |
9 10
|
opeq12d |
⊢ ( 𝜑 → 〈 if ( 𝐼 < 𝐾 , 𝐼 , ( 𝐼 + 1 ) ) , if ( 𝐽 < 𝐿 , 𝐽 , ( 𝐽 + 1 ) ) 〉 = 〈 𝑋 , 𝑌 〉 ) |
48 |
46 47
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) 𝐽 ) = 〈 𝑋 , 𝑌 〉 ) |
49 |
33 48
|
eqtr3id |
⊢ ( 𝜑 → ( ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ‘ 〈 𝐼 , 𝐽 〉 ) = 〈 𝑋 , 𝑌 〉 ) |
50 |
49
|
fveq2d |
⊢ ( 𝜑 → ( 𝐴 ‘ ( ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ‘ 〈 𝐼 , 𝐽 〉 ) ) = ( 𝐴 ‘ 〈 𝑋 , 𝑌 〉 ) ) |
51 |
|
df-ov |
⊢ ( 𝑋 𝐴 𝑌 ) = ( 𝐴 ‘ 〈 𝑋 , 𝑌 〉 ) |
52 |
50 51
|
eqtr4di |
⊢ ( 𝜑 → ( 𝐴 ‘ ( ( 𝑖 ∈ ℕ , 𝑗 ∈ ℕ ↦ 〈 if ( 𝑖 < 𝐾 , 𝑖 , ( 𝑖 + 1 ) ) , if ( 𝑗 < 𝐿 , 𝑗 , ( 𝑗 + 1 ) ) 〉 ) ‘ 〈 𝐼 , 𝐽 〉 ) ) = ( 𝑋 𝐴 𝑌 ) ) |
53 |
32 52
|
eqtrd |
⊢ ( 𝜑 → ( 𝐼 𝑆 𝐽 ) = ( 𝑋 𝐴 𝑌 ) ) |