| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smat.s |  |-  S = ( K ( subMat1 ` A ) L ) | 
						
							| 2 |  | smat.m |  |-  ( ph -> M e. NN ) | 
						
							| 3 |  | smat.n |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | smat.k |  |-  ( ph -> K e. ( 1 ... M ) ) | 
						
							| 5 |  | smat.l |  |-  ( ph -> L e. ( 1 ... N ) ) | 
						
							| 6 |  | smat.a |  |-  ( ph -> A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) | 
						
							| 7 |  | smatlem.i |  |-  ( ph -> I e. NN ) | 
						
							| 8 |  | smatlem.j |  |-  ( ph -> J e. NN ) | 
						
							| 9 |  | smatlem.1 |  |-  ( ph -> if ( I < K , I , ( I + 1 ) ) = X ) | 
						
							| 10 |  | smatlem.2 |  |-  ( ph -> if ( J < L , J , ( J + 1 ) ) = Y ) | 
						
							| 11 |  | fz1ssnn |  |-  ( 1 ... M ) C_ NN | 
						
							| 12 | 11 4 | sselid |  |-  ( ph -> K e. NN ) | 
						
							| 13 |  | fz1ssnn |  |-  ( 1 ... N ) C_ NN | 
						
							| 14 | 13 5 | sselid |  |-  ( ph -> L e. NN ) | 
						
							| 15 |  | smatfval |  |-  ( ( K e. NN /\ L e. NN /\ A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) -> ( K ( subMat1 ` A ) L ) = ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) | 
						
							| 16 | 12 14 6 15 | syl3anc |  |-  ( ph -> ( K ( subMat1 ` A ) L ) = ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) | 
						
							| 17 | 1 16 | eqtrid |  |-  ( ph -> S = ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) | 
						
							| 18 | 17 | oveqd |  |-  ( ph -> ( I S J ) = ( I ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) J ) ) | 
						
							| 19 |  | df-ov |  |-  ( I ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) J ) = ( ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ` <. I , J >. ) | 
						
							| 20 | 18 19 | eqtrdi |  |-  ( ph -> ( I S J ) = ( ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ` <. I , J >. ) ) | 
						
							| 21 | 7 8 | jca |  |-  ( ph -> ( I e. NN /\ J e. NN ) ) | 
						
							| 22 |  | opelxp |  |-  ( <. I , J >. e. ( NN X. NN ) <-> ( I e. NN /\ J e. NN ) ) | 
						
							| 23 | 21 22 | sylibr |  |-  ( ph -> <. I , J >. e. ( NN X. NN ) ) | 
						
							| 24 |  | eqid |  |-  ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) = ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) | 
						
							| 25 |  | opex |  |-  <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. e. _V | 
						
							| 26 | 24 25 | dmmpo |  |-  dom ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) = ( NN X. NN ) | 
						
							| 27 | 23 26 | eleqtrrdi |  |-  ( ph -> <. I , J >. e. dom ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) | 
						
							| 28 | 24 | mpofun |  |-  Fun ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) | 
						
							| 29 |  | fvco |  |-  ( ( Fun ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) /\ <. I , J >. e. dom ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) -> ( ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ` <. I , J >. ) = ( A ` ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) ) ) | 
						
							| 30 | 28 29 | mpan |  |-  ( <. I , J >. e. dom ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) -> ( ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ` <. I , J >. ) = ( A ` ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) ) ) | 
						
							| 31 | 27 30 | syl |  |-  ( ph -> ( ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ` <. I , J >. ) = ( A ` ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) ) ) | 
						
							| 32 | 20 31 | eqtrd |  |-  ( ph -> ( I S J ) = ( A ` ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) ) ) | 
						
							| 33 |  | df-ov |  |-  ( I ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) J ) = ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) | 
						
							| 34 |  | breq1 |  |-  ( i = I -> ( i < K <-> I < K ) ) | 
						
							| 35 |  | id |  |-  ( i = I -> i = I ) | 
						
							| 36 |  | oveq1 |  |-  ( i = I -> ( i + 1 ) = ( I + 1 ) ) | 
						
							| 37 | 34 35 36 | ifbieq12d |  |-  ( i = I -> if ( i < K , i , ( i + 1 ) ) = if ( I < K , I , ( I + 1 ) ) ) | 
						
							| 38 | 37 | opeq1d |  |-  ( i = I -> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. = <. if ( I < K , I , ( I + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) | 
						
							| 39 |  | breq1 |  |-  ( j = J -> ( j < L <-> J < L ) ) | 
						
							| 40 |  | id |  |-  ( j = J -> j = J ) | 
						
							| 41 |  | oveq1 |  |-  ( j = J -> ( j + 1 ) = ( J + 1 ) ) | 
						
							| 42 | 39 40 41 | ifbieq12d |  |-  ( j = J -> if ( j < L , j , ( j + 1 ) ) = if ( J < L , J , ( J + 1 ) ) ) | 
						
							| 43 | 42 | opeq2d |  |-  ( j = J -> <. if ( I < K , I , ( I + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. = <. if ( I < K , I , ( I + 1 ) ) , if ( J < L , J , ( J + 1 ) ) >. ) | 
						
							| 44 |  | opex |  |-  <. if ( I < K , I , ( I + 1 ) ) , if ( J < L , J , ( J + 1 ) ) >. e. _V | 
						
							| 45 | 38 43 24 44 | ovmpo |  |-  ( ( I e. NN /\ J e. NN ) -> ( I ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) J ) = <. if ( I < K , I , ( I + 1 ) ) , if ( J < L , J , ( J + 1 ) ) >. ) | 
						
							| 46 | 21 45 | syl |  |-  ( ph -> ( I ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) J ) = <. if ( I < K , I , ( I + 1 ) ) , if ( J < L , J , ( J + 1 ) ) >. ) | 
						
							| 47 | 9 10 | opeq12d |  |-  ( ph -> <. if ( I < K , I , ( I + 1 ) ) , if ( J < L , J , ( J + 1 ) ) >. = <. X , Y >. ) | 
						
							| 48 | 46 47 | eqtrd |  |-  ( ph -> ( I ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) J ) = <. X , Y >. ) | 
						
							| 49 | 33 48 | eqtr3id |  |-  ( ph -> ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) = <. X , Y >. ) | 
						
							| 50 | 49 | fveq2d |  |-  ( ph -> ( A ` ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) ) = ( A ` <. X , Y >. ) ) | 
						
							| 51 |  | df-ov |  |-  ( X A Y ) = ( A ` <. X , Y >. ) | 
						
							| 52 | 50 51 | eqtr4di |  |-  ( ph -> ( A ` ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) ) = ( X A Y ) ) | 
						
							| 53 | 32 52 | eqtrd |  |-  ( ph -> ( I S J ) = ( X A Y ) ) |