Step |
Hyp |
Ref |
Expression |
1 |
|
smat.s |
|- S = ( K ( subMat1 ` A ) L ) |
2 |
|
smat.m |
|- ( ph -> M e. NN ) |
3 |
|
smat.n |
|- ( ph -> N e. NN ) |
4 |
|
smat.k |
|- ( ph -> K e. ( 1 ... M ) ) |
5 |
|
smat.l |
|- ( ph -> L e. ( 1 ... N ) ) |
6 |
|
smat.a |
|- ( ph -> A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) |
7 |
|
smatlem.i |
|- ( ph -> I e. NN ) |
8 |
|
smatlem.j |
|- ( ph -> J e. NN ) |
9 |
|
smatlem.1 |
|- ( ph -> if ( I < K , I , ( I + 1 ) ) = X ) |
10 |
|
smatlem.2 |
|- ( ph -> if ( J < L , J , ( J + 1 ) ) = Y ) |
11 |
|
fz1ssnn |
|- ( 1 ... M ) C_ NN |
12 |
11 4
|
sselid |
|- ( ph -> K e. NN ) |
13 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
14 |
13 5
|
sselid |
|- ( ph -> L e. NN ) |
15 |
|
smatfval |
|- ( ( K e. NN /\ L e. NN /\ A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) -> ( K ( subMat1 ` A ) L ) = ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) |
16 |
12 14 6 15
|
syl3anc |
|- ( ph -> ( K ( subMat1 ` A ) L ) = ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) |
17 |
1 16
|
eqtrid |
|- ( ph -> S = ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) |
18 |
17
|
oveqd |
|- ( ph -> ( I S J ) = ( I ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) J ) ) |
19 |
|
df-ov |
|- ( I ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) J ) = ( ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ` <. I , J >. ) |
20 |
18 19
|
eqtrdi |
|- ( ph -> ( I S J ) = ( ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ` <. I , J >. ) ) |
21 |
7 8
|
jca |
|- ( ph -> ( I e. NN /\ J e. NN ) ) |
22 |
|
opelxp |
|- ( <. I , J >. e. ( NN X. NN ) <-> ( I e. NN /\ J e. NN ) ) |
23 |
21 22
|
sylibr |
|- ( ph -> <. I , J >. e. ( NN X. NN ) ) |
24 |
|
eqid |
|- ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) = ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) |
25 |
|
opex |
|- <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. e. _V |
26 |
24 25
|
dmmpo |
|- dom ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) = ( NN X. NN ) |
27 |
23 26
|
eleqtrrdi |
|- ( ph -> <. I , J >. e. dom ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) |
28 |
24
|
mpofun |
|- Fun ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) |
29 |
|
fvco |
|- ( ( Fun ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) /\ <. I , J >. e. dom ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) -> ( ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ` <. I , J >. ) = ( A ` ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) ) ) |
30 |
28 29
|
mpan |
|- ( <. I , J >. e. dom ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) -> ( ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ` <. I , J >. ) = ( A ` ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) ) ) |
31 |
27 30
|
syl |
|- ( ph -> ( ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ` <. I , J >. ) = ( A ` ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) ) ) |
32 |
20 31
|
eqtrd |
|- ( ph -> ( I S J ) = ( A ` ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) ) ) |
33 |
|
df-ov |
|- ( I ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) J ) = ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) |
34 |
|
breq1 |
|- ( i = I -> ( i < K <-> I < K ) ) |
35 |
|
id |
|- ( i = I -> i = I ) |
36 |
|
oveq1 |
|- ( i = I -> ( i + 1 ) = ( I + 1 ) ) |
37 |
34 35 36
|
ifbieq12d |
|- ( i = I -> if ( i < K , i , ( i + 1 ) ) = if ( I < K , I , ( I + 1 ) ) ) |
38 |
37
|
opeq1d |
|- ( i = I -> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. = <. if ( I < K , I , ( I + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) |
39 |
|
breq1 |
|- ( j = J -> ( j < L <-> J < L ) ) |
40 |
|
id |
|- ( j = J -> j = J ) |
41 |
|
oveq1 |
|- ( j = J -> ( j + 1 ) = ( J + 1 ) ) |
42 |
39 40 41
|
ifbieq12d |
|- ( j = J -> if ( j < L , j , ( j + 1 ) ) = if ( J < L , J , ( J + 1 ) ) ) |
43 |
42
|
opeq2d |
|- ( j = J -> <. if ( I < K , I , ( I + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. = <. if ( I < K , I , ( I + 1 ) ) , if ( J < L , J , ( J + 1 ) ) >. ) |
44 |
|
opex |
|- <. if ( I < K , I , ( I + 1 ) ) , if ( J < L , J , ( J + 1 ) ) >. e. _V |
45 |
38 43 24 44
|
ovmpo |
|- ( ( I e. NN /\ J e. NN ) -> ( I ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) J ) = <. if ( I < K , I , ( I + 1 ) ) , if ( J < L , J , ( J + 1 ) ) >. ) |
46 |
21 45
|
syl |
|- ( ph -> ( I ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) J ) = <. if ( I < K , I , ( I + 1 ) ) , if ( J < L , J , ( J + 1 ) ) >. ) |
47 |
9 10
|
opeq12d |
|- ( ph -> <. if ( I < K , I , ( I + 1 ) ) , if ( J < L , J , ( J + 1 ) ) >. = <. X , Y >. ) |
48 |
46 47
|
eqtrd |
|- ( ph -> ( I ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) J ) = <. X , Y >. ) |
49 |
33 48
|
eqtr3id |
|- ( ph -> ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) = <. X , Y >. ) |
50 |
49
|
fveq2d |
|- ( ph -> ( A ` ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) ) = ( A ` <. X , Y >. ) ) |
51 |
|
df-ov |
|- ( X A Y ) = ( A ` <. X , Y >. ) |
52 |
50 51
|
eqtr4di |
|- ( ph -> ( A ` ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. I , J >. ) ) = ( X A Y ) ) |
53 |
32 52
|
eqtrd |
|- ( ph -> ( I S J ) = ( X A Y ) ) |