Metamath Proof Explorer


Theorem smattl

Description: Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s
|- S = ( K ( subMat1 ` A ) L )
smat.m
|- ( ph -> M e. NN )
smat.n
|- ( ph -> N e. NN )
smat.k
|- ( ph -> K e. ( 1 ... M ) )
smat.l
|- ( ph -> L e. ( 1 ... N ) )
smat.a
|- ( ph -> A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) )
smattl.i
|- ( ph -> I e. ( 1 ..^ K ) )
smattl.j
|- ( ph -> J e. ( 1 ..^ L ) )
Assertion smattl
|- ( ph -> ( I S J ) = ( I A J ) )

Proof

Step Hyp Ref Expression
1 smat.s
 |-  S = ( K ( subMat1 ` A ) L )
2 smat.m
 |-  ( ph -> M e. NN )
3 smat.n
 |-  ( ph -> N e. NN )
4 smat.k
 |-  ( ph -> K e. ( 1 ... M ) )
5 smat.l
 |-  ( ph -> L e. ( 1 ... N ) )
6 smat.a
 |-  ( ph -> A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) )
7 smattl.i
 |-  ( ph -> I e. ( 1 ..^ K ) )
8 smattl.j
 |-  ( ph -> J e. ( 1 ..^ L ) )
9 fzossnn
 |-  ( 1 ..^ K ) C_ NN
10 9 7 sseldi
 |-  ( ph -> I e. NN )
11 fzossnn
 |-  ( 1 ..^ L ) C_ NN
12 11 8 sseldi
 |-  ( ph -> J e. NN )
13 elfzolt2
 |-  ( I e. ( 1 ..^ K ) -> I < K )
14 7 13 syl
 |-  ( ph -> I < K )
15 14 iftrued
 |-  ( ph -> if ( I < K , I , ( I + 1 ) ) = I )
16 elfzolt2
 |-  ( J e. ( 1 ..^ L ) -> J < L )
17 8 16 syl
 |-  ( ph -> J < L )
18 17 iftrued
 |-  ( ph -> if ( J < L , J , ( J + 1 ) ) = J )
19 1 2 3 4 5 6 10 12 15 18 smatlem
 |-  ( ph -> ( I S J ) = ( I A J ) )