| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smat.s |
⊢ 𝑆 = ( 𝐾 ( subMat1 ‘ 𝐴 ) 𝐿 ) |
| 2 |
|
smat.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 3 |
|
smat.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
smat.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 1 ... 𝑀 ) ) |
| 5 |
|
smat.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 1 ... 𝑁 ) ) |
| 6 |
|
smat.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 ↑m ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) ) |
| 7 |
|
smattl.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 1 ..^ 𝐾 ) ) |
| 8 |
|
smattl.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 1 ..^ 𝐿 ) ) |
| 9 |
|
fzossnn |
⊢ ( 1 ..^ 𝐾 ) ⊆ ℕ |
| 10 |
9 7
|
sselid |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
| 11 |
|
fzossnn |
⊢ ( 1 ..^ 𝐿 ) ⊆ ℕ |
| 12 |
11 8
|
sselid |
⊢ ( 𝜑 → 𝐽 ∈ ℕ ) |
| 13 |
|
elfzolt2 |
⊢ ( 𝐼 ∈ ( 1 ..^ 𝐾 ) → 𝐼 < 𝐾 ) |
| 14 |
7 13
|
syl |
⊢ ( 𝜑 → 𝐼 < 𝐾 ) |
| 15 |
14
|
iftrued |
⊢ ( 𝜑 → if ( 𝐼 < 𝐾 , 𝐼 , ( 𝐼 + 1 ) ) = 𝐼 ) |
| 16 |
|
elfzolt2 |
⊢ ( 𝐽 ∈ ( 1 ..^ 𝐿 ) → 𝐽 < 𝐿 ) |
| 17 |
8 16
|
syl |
⊢ ( 𝜑 → 𝐽 < 𝐿 ) |
| 18 |
17
|
iftrued |
⊢ ( 𝜑 → if ( 𝐽 < 𝐿 , 𝐽 , ( 𝐽 + 1 ) ) = 𝐽 ) |
| 19 |
1 2 3 4 5 6 10 12 15 18
|
smatlem |
⊢ ( 𝜑 → ( 𝐼 𝑆 𝐽 ) = ( 𝐼 𝐴 𝐽 ) ) |