Metamath Proof Explorer


Theorem smattl

Description: Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s 𝑆 = ( 𝐾 ( subMat1 ‘ 𝐴 ) 𝐿 )
smat.m ( 𝜑𝑀 ∈ ℕ )
smat.n ( 𝜑𝑁 ∈ ℕ )
smat.k ( 𝜑𝐾 ∈ ( 1 ... 𝑀 ) )
smat.l ( 𝜑𝐿 ∈ ( 1 ... 𝑁 ) )
smat.a ( 𝜑𝐴 ∈ ( 𝐵m ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) )
smattl.i ( 𝜑𝐼 ∈ ( 1 ..^ 𝐾 ) )
smattl.j ( 𝜑𝐽 ∈ ( 1 ..^ 𝐿 ) )
Assertion smattl ( 𝜑 → ( 𝐼 𝑆 𝐽 ) = ( 𝐼 𝐴 𝐽 ) )

Proof

Step Hyp Ref Expression
1 smat.s 𝑆 = ( 𝐾 ( subMat1 ‘ 𝐴 ) 𝐿 )
2 smat.m ( 𝜑𝑀 ∈ ℕ )
3 smat.n ( 𝜑𝑁 ∈ ℕ )
4 smat.k ( 𝜑𝐾 ∈ ( 1 ... 𝑀 ) )
5 smat.l ( 𝜑𝐿 ∈ ( 1 ... 𝑁 ) )
6 smat.a ( 𝜑𝐴 ∈ ( 𝐵m ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) )
7 smattl.i ( 𝜑𝐼 ∈ ( 1 ..^ 𝐾 ) )
8 smattl.j ( 𝜑𝐽 ∈ ( 1 ..^ 𝐿 ) )
9 fzossnn ( 1 ..^ 𝐾 ) ⊆ ℕ
10 9 7 sseldi ( 𝜑𝐼 ∈ ℕ )
11 fzossnn ( 1 ..^ 𝐿 ) ⊆ ℕ
12 11 8 sseldi ( 𝜑𝐽 ∈ ℕ )
13 elfzolt2 ( 𝐼 ∈ ( 1 ..^ 𝐾 ) → 𝐼 < 𝐾 )
14 7 13 syl ( 𝜑𝐼 < 𝐾 )
15 14 iftrued ( 𝜑 → if ( 𝐼 < 𝐾 , 𝐼 , ( 𝐼 + 1 ) ) = 𝐼 )
16 elfzolt2 ( 𝐽 ∈ ( 1 ..^ 𝐿 ) → 𝐽 < 𝐿 )
17 8 16 syl ( 𝜑𝐽 < 𝐿 )
18 17 iftrued ( 𝜑 → if ( 𝐽 < 𝐿 , 𝐽 , ( 𝐽 + 1 ) ) = 𝐽 )
19 1 2 3 4 5 6 10 12 15 18 smatlem ( 𝜑 → ( 𝐼 𝑆 𝐽 ) = ( 𝐼 𝐴 𝐽 ) )