| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smat.s | ⊢ 𝑆  =  ( 𝐾 ( subMat1 ‘ 𝐴 ) 𝐿 ) | 
						
							| 2 |  | smat.m | ⊢ ( 𝜑  →  𝑀  ∈  ℕ ) | 
						
							| 3 |  | smat.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 4 |  | smat.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 1 ... 𝑀 ) ) | 
						
							| 5 |  | smat.l | ⊢ ( 𝜑  →  𝐿  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 6 |  | smat.a | ⊢ ( 𝜑  →  𝐴  ∈  ( 𝐵  ↑m  ( ( 1 ... 𝑀 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 7 |  | smattr.i | ⊢ ( 𝜑  →  𝐼  ∈  ( 𝐾 ... 𝑀 ) ) | 
						
							| 8 |  | smattr.j | ⊢ ( 𝜑  →  𝐽  ∈  ( 1 ..^ 𝐿 ) ) | 
						
							| 9 |  | fz1ssnn | ⊢ ( 1 ... 𝑀 )  ⊆  ℕ | 
						
							| 10 | 9 4 | sselid | ⊢ ( 𝜑  →  𝐾  ∈  ℕ ) | 
						
							| 11 |  | fzssnn | ⊢ ( 𝐾  ∈  ℕ  →  ( 𝐾 ... 𝑀 )  ⊆  ℕ ) | 
						
							| 12 | 10 11 | syl | ⊢ ( 𝜑  →  ( 𝐾 ... 𝑀 )  ⊆  ℕ ) | 
						
							| 13 | 12 7 | sseldd | ⊢ ( 𝜑  →  𝐼  ∈  ℕ ) | 
						
							| 14 |  | fzossnn | ⊢ ( 1 ..^ 𝐿 )  ⊆  ℕ | 
						
							| 15 | 14 8 | sselid | ⊢ ( 𝜑  →  𝐽  ∈  ℕ ) | 
						
							| 16 |  | elfzle1 | ⊢ ( 𝐼  ∈  ( 𝐾 ... 𝑀 )  →  𝐾  ≤  𝐼 ) | 
						
							| 17 | 7 16 | syl | ⊢ ( 𝜑  →  𝐾  ≤  𝐼 ) | 
						
							| 18 | 10 | nnred | ⊢ ( 𝜑  →  𝐾  ∈  ℝ ) | 
						
							| 19 | 13 | nnred | ⊢ ( 𝜑  →  𝐼  ∈  ℝ ) | 
						
							| 20 | 18 19 | lenltd | ⊢ ( 𝜑  →  ( 𝐾  ≤  𝐼  ↔  ¬  𝐼  <  𝐾 ) ) | 
						
							| 21 | 17 20 | mpbid | ⊢ ( 𝜑  →  ¬  𝐼  <  𝐾 ) | 
						
							| 22 | 21 | iffalsed | ⊢ ( 𝜑  →  if ( 𝐼  <  𝐾 ,  𝐼 ,  ( 𝐼  +  1 ) )  =  ( 𝐼  +  1 ) ) | 
						
							| 23 |  | elfzolt2 | ⊢ ( 𝐽  ∈  ( 1 ..^ 𝐿 )  →  𝐽  <  𝐿 ) | 
						
							| 24 | 8 23 | syl | ⊢ ( 𝜑  →  𝐽  <  𝐿 ) | 
						
							| 25 | 24 | iftrued | ⊢ ( 𝜑  →  if ( 𝐽  <  𝐿 ,  𝐽 ,  ( 𝐽  +  1 ) )  =  𝐽 ) | 
						
							| 26 | 1 2 3 4 5 6 13 15 22 25 | smatlem | ⊢ ( 𝜑  →  ( 𝐼 𝑆 𝐽 )  =  ( ( 𝐼  +  1 ) 𝐴 𝐽 ) ) |