Metamath Proof Explorer


Theorem smattr

Description: Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s 𝑆 = ( 𝐾 ( subMat1 ‘ 𝐴 ) 𝐿 )
smat.m ( 𝜑𝑀 ∈ ℕ )
smat.n ( 𝜑𝑁 ∈ ℕ )
smat.k ( 𝜑𝐾 ∈ ( 1 ... 𝑀 ) )
smat.l ( 𝜑𝐿 ∈ ( 1 ... 𝑁 ) )
smat.a ( 𝜑𝐴 ∈ ( 𝐵m ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) )
smattr.i ( 𝜑𝐼 ∈ ( 𝐾 ... 𝑀 ) )
smattr.j ( 𝜑𝐽 ∈ ( 1 ..^ 𝐿 ) )
Assertion smattr ( 𝜑 → ( 𝐼 𝑆 𝐽 ) = ( ( 𝐼 + 1 ) 𝐴 𝐽 ) )

Proof

Step Hyp Ref Expression
1 smat.s 𝑆 = ( 𝐾 ( subMat1 ‘ 𝐴 ) 𝐿 )
2 smat.m ( 𝜑𝑀 ∈ ℕ )
3 smat.n ( 𝜑𝑁 ∈ ℕ )
4 smat.k ( 𝜑𝐾 ∈ ( 1 ... 𝑀 ) )
5 smat.l ( 𝜑𝐿 ∈ ( 1 ... 𝑁 ) )
6 smat.a ( 𝜑𝐴 ∈ ( 𝐵m ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) )
7 smattr.i ( 𝜑𝐼 ∈ ( 𝐾 ... 𝑀 ) )
8 smattr.j ( 𝜑𝐽 ∈ ( 1 ..^ 𝐿 ) )
9 fz1ssnn ( 1 ... 𝑀 ) ⊆ ℕ
10 9 4 sselid ( 𝜑𝐾 ∈ ℕ )
11 fzssnn ( 𝐾 ∈ ℕ → ( 𝐾 ... 𝑀 ) ⊆ ℕ )
12 10 11 syl ( 𝜑 → ( 𝐾 ... 𝑀 ) ⊆ ℕ )
13 12 7 sseldd ( 𝜑𝐼 ∈ ℕ )
14 fzossnn ( 1 ..^ 𝐿 ) ⊆ ℕ
15 14 8 sselid ( 𝜑𝐽 ∈ ℕ )
16 elfzle1 ( 𝐼 ∈ ( 𝐾 ... 𝑀 ) → 𝐾𝐼 )
17 7 16 syl ( 𝜑𝐾𝐼 )
18 10 nnred ( 𝜑𝐾 ∈ ℝ )
19 13 nnred ( 𝜑𝐼 ∈ ℝ )
20 18 19 lenltd ( 𝜑 → ( 𝐾𝐼 ↔ ¬ 𝐼 < 𝐾 ) )
21 17 20 mpbid ( 𝜑 → ¬ 𝐼 < 𝐾 )
22 21 iffalsed ( 𝜑 → if ( 𝐼 < 𝐾 , 𝐼 , ( 𝐼 + 1 ) ) = ( 𝐼 + 1 ) )
23 elfzolt2 ( 𝐽 ∈ ( 1 ..^ 𝐿 ) → 𝐽 < 𝐿 )
24 8 23 syl ( 𝜑𝐽 < 𝐿 )
25 24 iftrued ( 𝜑 → if ( 𝐽 < 𝐿 , 𝐽 , ( 𝐽 + 1 ) ) = 𝐽 )
26 1 2 3 4 5 6 13 15 22 25 smatlem ( 𝜑 → ( 𝐼 𝑆 𝐽 ) = ( ( 𝐼 + 1 ) 𝐴 𝐽 ) )