Metamath Proof Explorer


Theorem smattr

Description: Entries of a submatrix, top right. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s S=KsubMat1AL
smat.m φM
smat.n φN
smat.k φK1M
smat.l φL1N
smat.a φAB1M×1N
smattr.i φIKM
smattr.j φJ1..^L
Assertion smattr φISJ=I+1AJ

Proof

Step Hyp Ref Expression
1 smat.s S=KsubMat1AL
2 smat.m φM
3 smat.n φN
4 smat.k φK1M
5 smat.l φL1N
6 smat.a φAB1M×1N
7 smattr.i φIKM
8 smattr.j φJ1..^L
9 fz1ssnn 1M
10 9 4 sselid φK
11 fzssnn KKM
12 10 11 syl φKM
13 12 7 sseldd φI
14 fzossnn 1..^L
15 14 8 sselid φJ
16 elfzle1 IKMKI
17 7 16 syl φKI
18 10 nnred φK
19 13 nnred φI
20 18 19 lenltd φKI¬I<K
21 17 20 mpbid φ¬I<K
22 21 iffalsed φifI<KII+1=I+1
23 elfzolt2 J1..^LJ<L
24 8 23 syl φJ<L
25 24 iftrued φifJ<LJJ+1=J
26 1 2 3 4 5 6 13 15 22 25 smatlem φISJ=I+1AJ