Metamath Proof Explorer


Theorem smatbl

Description: Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s S = K subMat 1 A L
smat.m φ M
smat.n φ N
smat.k φ K 1 M
smat.l φ L 1 N
smat.a φ A B 1 M × 1 N
smatbl.i φ I 1 ..^ K
smatbl.j φ J L N
Assertion smatbl φ I S J = I A J + 1

Proof

Step Hyp Ref Expression
1 smat.s S = K subMat 1 A L
2 smat.m φ M
3 smat.n φ N
4 smat.k φ K 1 M
5 smat.l φ L 1 N
6 smat.a φ A B 1 M × 1 N
7 smatbl.i φ I 1 ..^ K
8 smatbl.j φ J L N
9 fzossnn 1 ..^ K
10 9 7 sselid φ I
11 fz1ssnn 1 N
12 11 5 sselid φ L
13 fzssnn L L N
14 12 13 syl φ L N
15 14 8 sseldd φ J
16 elfzolt2 I 1 ..^ K I < K
17 7 16 syl φ I < K
18 17 iftrued φ if I < K I I + 1 = I
19 elfzle1 J L N L J
20 8 19 syl φ L J
21 12 nnred φ L
22 15 nnred φ J
23 21 22 lenltd φ L J ¬ J < L
24 20 23 mpbid φ ¬ J < L
25 24 iffalsed φ if J < L J J + 1 = J + 1
26 1 2 3 4 5 6 10 15 18 25 smatlem φ I S J = I A J + 1