Metamath Proof Explorer


Theorem smatbl

Description: Entries of a submatrix, bottom left. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s
|- S = ( K ( subMat1 ` A ) L )
smat.m
|- ( ph -> M e. NN )
smat.n
|- ( ph -> N e. NN )
smat.k
|- ( ph -> K e. ( 1 ... M ) )
smat.l
|- ( ph -> L e. ( 1 ... N ) )
smat.a
|- ( ph -> A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) )
smatbl.i
|- ( ph -> I e. ( 1 ..^ K ) )
smatbl.j
|- ( ph -> J e. ( L ... N ) )
Assertion smatbl
|- ( ph -> ( I S J ) = ( I A ( J + 1 ) ) )

Proof

Step Hyp Ref Expression
1 smat.s
 |-  S = ( K ( subMat1 ` A ) L )
2 smat.m
 |-  ( ph -> M e. NN )
3 smat.n
 |-  ( ph -> N e. NN )
4 smat.k
 |-  ( ph -> K e. ( 1 ... M ) )
5 smat.l
 |-  ( ph -> L e. ( 1 ... N ) )
6 smat.a
 |-  ( ph -> A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) )
7 smatbl.i
 |-  ( ph -> I e. ( 1 ..^ K ) )
8 smatbl.j
 |-  ( ph -> J e. ( L ... N ) )
9 fzossnn
 |-  ( 1 ..^ K ) C_ NN
10 9 7 sseldi
 |-  ( ph -> I e. NN )
11 fz1ssnn
 |-  ( 1 ... N ) C_ NN
12 11 5 sseldi
 |-  ( ph -> L e. NN )
13 fzssnn
 |-  ( L e. NN -> ( L ... N ) C_ NN )
14 12 13 syl
 |-  ( ph -> ( L ... N ) C_ NN )
15 14 8 sseldd
 |-  ( ph -> J e. NN )
16 elfzolt2
 |-  ( I e. ( 1 ..^ K ) -> I < K )
17 7 16 syl
 |-  ( ph -> I < K )
18 17 iftrued
 |-  ( ph -> if ( I < K , I , ( I + 1 ) ) = I )
19 elfzle1
 |-  ( J e. ( L ... N ) -> L <_ J )
20 8 19 syl
 |-  ( ph -> L <_ J )
21 12 nnred
 |-  ( ph -> L e. RR )
22 15 nnred
 |-  ( ph -> J e. RR )
23 21 22 lenltd
 |-  ( ph -> ( L <_ J <-> -. J < L ) )
24 20 23 mpbid
 |-  ( ph -> -. J < L )
25 24 iffalsed
 |-  ( ph -> if ( J < L , J , ( J + 1 ) ) = ( J + 1 ) )
26 1 2 3 4 5 6 10 15 18 25 smatlem
 |-  ( ph -> ( I S J ) = ( I A ( J + 1 ) ) )