| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smat.s |  |-  S = ( K ( subMat1 ` A ) L ) | 
						
							| 2 |  | smat.m |  |-  ( ph -> M e. NN ) | 
						
							| 3 |  | smat.n |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | smat.k |  |-  ( ph -> K e. ( 1 ... M ) ) | 
						
							| 5 |  | smat.l |  |-  ( ph -> L e. ( 1 ... N ) ) | 
						
							| 6 |  | smat.a |  |-  ( ph -> A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) | 
						
							| 7 |  | smatbl.i |  |-  ( ph -> I e. ( 1 ..^ K ) ) | 
						
							| 8 |  | smatbl.j |  |-  ( ph -> J e. ( L ... N ) ) | 
						
							| 9 |  | fzossnn |  |-  ( 1 ..^ K ) C_ NN | 
						
							| 10 | 9 7 | sselid |  |-  ( ph -> I e. NN ) | 
						
							| 11 |  | fz1ssnn |  |-  ( 1 ... N ) C_ NN | 
						
							| 12 | 11 5 | sselid |  |-  ( ph -> L e. NN ) | 
						
							| 13 |  | fzssnn |  |-  ( L e. NN -> ( L ... N ) C_ NN ) | 
						
							| 14 | 12 13 | syl |  |-  ( ph -> ( L ... N ) C_ NN ) | 
						
							| 15 | 14 8 | sseldd |  |-  ( ph -> J e. NN ) | 
						
							| 16 |  | elfzolt2 |  |-  ( I e. ( 1 ..^ K ) -> I < K ) | 
						
							| 17 | 7 16 | syl |  |-  ( ph -> I < K ) | 
						
							| 18 | 17 | iftrued |  |-  ( ph -> if ( I < K , I , ( I + 1 ) ) = I ) | 
						
							| 19 |  | elfzle1 |  |-  ( J e. ( L ... N ) -> L <_ J ) | 
						
							| 20 | 8 19 | syl |  |-  ( ph -> L <_ J ) | 
						
							| 21 | 12 | nnred |  |-  ( ph -> L e. RR ) | 
						
							| 22 | 15 | nnred |  |-  ( ph -> J e. RR ) | 
						
							| 23 | 21 22 | lenltd |  |-  ( ph -> ( L <_ J <-> -. J < L ) ) | 
						
							| 24 | 20 23 | mpbid |  |-  ( ph -> -. J < L ) | 
						
							| 25 | 24 | iffalsed |  |-  ( ph -> if ( J < L , J , ( J + 1 ) ) = ( J + 1 ) ) | 
						
							| 26 | 1 2 3 4 5 6 10 15 18 25 | smatlem |  |-  ( ph -> ( I S J ) = ( I A ( J + 1 ) ) ) |