| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smat.s |  |-  S = ( K ( subMat1 ` A ) L ) | 
						
							| 2 |  | smat.m |  |-  ( ph -> M e. NN ) | 
						
							| 3 |  | smat.n |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | smat.k |  |-  ( ph -> K e. ( 1 ... M ) ) | 
						
							| 5 |  | smat.l |  |-  ( ph -> L e. ( 1 ... N ) ) | 
						
							| 6 |  | smat.a |  |-  ( ph -> A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) | 
						
							| 7 |  | smatbr.i |  |-  ( ph -> I e. ( K ... M ) ) | 
						
							| 8 |  | smatbr.j |  |-  ( ph -> J e. ( L ... N ) ) | 
						
							| 9 |  | fz1ssnn |  |-  ( 1 ... M ) C_ NN | 
						
							| 10 | 9 4 | sselid |  |-  ( ph -> K e. NN ) | 
						
							| 11 |  | fzssnn |  |-  ( K e. NN -> ( K ... M ) C_ NN ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> ( K ... M ) C_ NN ) | 
						
							| 13 | 12 7 | sseldd |  |-  ( ph -> I e. NN ) | 
						
							| 14 |  | fz1ssnn |  |-  ( 1 ... N ) C_ NN | 
						
							| 15 | 14 5 | sselid |  |-  ( ph -> L e. NN ) | 
						
							| 16 |  | fzssnn |  |-  ( L e. NN -> ( L ... N ) C_ NN ) | 
						
							| 17 | 15 16 | syl |  |-  ( ph -> ( L ... N ) C_ NN ) | 
						
							| 18 | 17 8 | sseldd |  |-  ( ph -> J e. NN ) | 
						
							| 19 |  | elfzle1 |  |-  ( I e. ( K ... M ) -> K <_ I ) | 
						
							| 20 | 7 19 | syl |  |-  ( ph -> K <_ I ) | 
						
							| 21 | 10 | nnred |  |-  ( ph -> K e. RR ) | 
						
							| 22 | 13 | nnred |  |-  ( ph -> I e. RR ) | 
						
							| 23 | 21 22 | lenltd |  |-  ( ph -> ( K <_ I <-> -. I < K ) ) | 
						
							| 24 | 20 23 | mpbid |  |-  ( ph -> -. I < K ) | 
						
							| 25 | 24 | iffalsed |  |-  ( ph -> if ( I < K , I , ( I + 1 ) ) = ( I + 1 ) ) | 
						
							| 26 |  | elfzle1 |  |-  ( J e. ( L ... N ) -> L <_ J ) | 
						
							| 27 | 8 26 | syl |  |-  ( ph -> L <_ J ) | 
						
							| 28 | 15 | nnred |  |-  ( ph -> L e. RR ) | 
						
							| 29 | 18 | nnred |  |-  ( ph -> J e. RR ) | 
						
							| 30 | 28 29 | lenltd |  |-  ( ph -> ( L <_ J <-> -. J < L ) ) | 
						
							| 31 | 27 30 | mpbid |  |-  ( ph -> -. J < L ) | 
						
							| 32 | 31 | iffalsed |  |-  ( ph -> if ( J < L , J , ( J + 1 ) ) = ( J + 1 ) ) | 
						
							| 33 | 1 2 3 4 5 6 13 18 25 32 | smatlem |  |-  ( ph -> ( I S J ) = ( ( I + 1 ) A ( J + 1 ) ) ) |