| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smat.s |
⊢ 𝑆 = ( 𝐾 ( subMat1 ‘ 𝐴 ) 𝐿 ) |
| 2 |
|
smat.m |
⊢ ( 𝜑 → 𝑀 ∈ ℕ ) |
| 3 |
|
smat.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 4 |
|
smat.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 1 ... 𝑀 ) ) |
| 5 |
|
smat.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 1 ... 𝑁 ) ) |
| 6 |
|
smat.a |
⊢ ( 𝜑 → 𝐴 ∈ ( 𝐵 ↑m ( ( 1 ... 𝑀 ) × ( 1 ... 𝑁 ) ) ) ) |
| 7 |
|
smatbr.i |
⊢ ( 𝜑 → 𝐼 ∈ ( 𝐾 ... 𝑀 ) ) |
| 8 |
|
smatbr.j |
⊢ ( 𝜑 → 𝐽 ∈ ( 𝐿 ... 𝑁 ) ) |
| 9 |
|
fz1ssnn |
⊢ ( 1 ... 𝑀 ) ⊆ ℕ |
| 10 |
9 4
|
sselid |
⊢ ( 𝜑 → 𝐾 ∈ ℕ ) |
| 11 |
|
fzssnn |
⊢ ( 𝐾 ∈ ℕ → ( 𝐾 ... 𝑀 ) ⊆ ℕ ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → ( 𝐾 ... 𝑀 ) ⊆ ℕ ) |
| 13 |
12 7
|
sseldd |
⊢ ( 𝜑 → 𝐼 ∈ ℕ ) |
| 14 |
|
fz1ssnn |
⊢ ( 1 ... 𝑁 ) ⊆ ℕ |
| 15 |
14 5
|
sselid |
⊢ ( 𝜑 → 𝐿 ∈ ℕ ) |
| 16 |
|
fzssnn |
⊢ ( 𝐿 ∈ ℕ → ( 𝐿 ... 𝑁 ) ⊆ ℕ ) |
| 17 |
15 16
|
syl |
⊢ ( 𝜑 → ( 𝐿 ... 𝑁 ) ⊆ ℕ ) |
| 18 |
17 8
|
sseldd |
⊢ ( 𝜑 → 𝐽 ∈ ℕ ) |
| 19 |
|
elfzle1 |
⊢ ( 𝐼 ∈ ( 𝐾 ... 𝑀 ) → 𝐾 ≤ 𝐼 ) |
| 20 |
7 19
|
syl |
⊢ ( 𝜑 → 𝐾 ≤ 𝐼 ) |
| 21 |
10
|
nnred |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 22 |
13
|
nnred |
⊢ ( 𝜑 → 𝐼 ∈ ℝ ) |
| 23 |
21 22
|
lenltd |
⊢ ( 𝜑 → ( 𝐾 ≤ 𝐼 ↔ ¬ 𝐼 < 𝐾 ) ) |
| 24 |
20 23
|
mpbid |
⊢ ( 𝜑 → ¬ 𝐼 < 𝐾 ) |
| 25 |
24
|
iffalsed |
⊢ ( 𝜑 → if ( 𝐼 < 𝐾 , 𝐼 , ( 𝐼 + 1 ) ) = ( 𝐼 + 1 ) ) |
| 26 |
|
elfzle1 |
⊢ ( 𝐽 ∈ ( 𝐿 ... 𝑁 ) → 𝐿 ≤ 𝐽 ) |
| 27 |
8 26
|
syl |
⊢ ( 𝜑 → 𝐿 ≤ 𝐽 ) |
| 28 |
15
|
nnred |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 29 |
18
|
nnred |
⊢ ( 𝜑 → 𝐽 ∈ ℝ ) |
| 30 |
28 29
|
lenltd |
⊢ ( 𝜑 → ( 𝐿 ≤ 𝐽 ↔ ¬ 𝐽 < 𝐿 ) ) |
| 31 |
27 30
|
mpbid |
⊢ ( 𝜑 → ¬ 𝐽 < 𝐿 ) |
| 32 |
31
|
iffalsed |
⊢ ( 𝜑 → if ( 𝐽 < 𝐿 , 𝐽 , ( 𝐽 + 1 ) ) = ( 𝐽 + 1 ) ) |
| 33 |
1 2 3 4 5 6 13 18 25 32
|
smatlem |
⊢ ( 𝜑 → ( 𝐼 𝑆 𝐽 ) = ( ( 𝐼 + 1 ) 𝐴 ( 𝐽 + 1 ) ) ) |