Metamath Proof Explorer


Theorem smatcl

Description: Closure of the square submatrix: if M is a square matrix of dimension N with indices in ( 1 ... N ) , then a submatrix of M is of dimension ( N - 1 ) . (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smatcl.a 𝐴 = ( ( 1 ... 𝑁 ) Mat 𝑅 )
smatcl.b 𝐵 = ( Base ‘ 𝐴 )
smatcl.c 𝐶 = ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) )
smatcl.s 𝑆 = ( 𝐾 ( subMat1 ‘ 𝑀 ) 𝐿 )
smatcl.n ( 𝜑𝑁 ∈ ℕ )
smatcl.k ( 𝜑𝐾 ∈ ( 1 ... 𝑁 ) )
smatcl.l ( 𝜑𝐿 ∈ ( 1 ... 𝑁 ) )
smatcl.m ( 𝜑𝑀𝐵 )
Assertion smatcl ( 𝜑𝑆𝐶 )

Proof

Step Hyp Ref Expression
1 smatcl.a 𝐴 = ( ( 1 ... 𝑁 ) Mat 𝑅 )
2 smatcl.b 𝐵 = ( Base ‘ 𝐴 )
3 smatcl.c 𝐶 = ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) )
4 smatcl.s 𝑆 = ( 𝐾 ( subMat1 ‘ 𝑀 ) 𝐿 )
5 smatcl.n ( 𝜑𝑁 ∈ ℕ )
6 smatcl.k ( 𝜑𝐾 ∈ ( 1 ... 𝑁 ) )
7 smatcl.l ( 𝜑𝐿 ∈ ( 1 ... 𝑁 ) )
8 smatcl.m ( 𝜑𝑀𝐵 )
9 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
10 1 9 2 matbas2i ( 𝑀𝐵𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( 1 ... 𝑁 ) × ( 1 ... 𝑁 ) ) ) )
11 8 10 syl ( 𝜑𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( 1 ... 𝑁 ) × ( 1 ... 𝑁 ) ) ) )
12 4 5 5 6 7 11 smatrcl ( 𝜑𝑆 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) )
13 fzfi ( 1 ... ( 𝑁 − 1 ) ) ∈ Fin
14 1 2 matrcl ( 𝑀𝐵 → ( ( 1 ... 𝑁 ) ∈ Fin ∧ 𝑅 ∈ V ) )
15 14 simprd ( 𝑀𝐵𝑅 ∈ V )
16 8 15 syl ( 𝜑𝑅 ∈ V )
17 eqid ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) = ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 )
18 17 9 matbas2 ( ( ( 1 ... ( 𝑁 − 1 ) ) ∈ Fin ∧ 𝑅 ∈ V ) → ( ( Base ‘ 𝑅 ) ↑m ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) = ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) )
19 13 16 18 sylancr ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) = ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) )
20 19 eleq2d ( 𝜑 → ( 𝑆 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) ↔ 𝑆 ∈ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) ) )
21 12 20 mpbid ( 𝜑𝑆 ∈ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) )
22 21 3 eleqtrrdi ( 𝜑𝑆𝐶 )