| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smatcl.a | ⊢ 𝐴  =  ( ( 1 ... 𝑁 )  Mat  𝑅 ) | 
						
							| 2 |  | smatcl.b | ⊢ 𝐵  =  ( Base ‘ 𝐴 ) | 
						
							| 3 |  | smatcl.c | ⊢ 𝐶  =  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) | 
						
							| 4 |  | smatcl.s | ⊢ 𝑆  =  ( 𝐾 ( subMat1 ‘ 𝑀 ) 𝐿 ) | 
						
							| 5 |  | smatcl.n | ⊢ ( 𝜑  →  𝑁  ∈  ℕ ) | 
						
							| 6 |  | smatcl.k | ⊢ ( 𝜑  →  𝐾  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 7 |  | smatcl.l | ⊢ ( 𝜑  →  𝐿  ∈  ( 1 ... 𝑁 ) ) | 
						
							| 8 |  | smatcl.m | ⊢ ( 𝜑  →  𝑀  ∈  𝐵 ) | 
						
							| 9 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 10 | 1 9 2 | matbas2i | ⊢ ( 𝑀  ∈  𝐵  →  𝑀  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 11 | 8 10 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... 𝑁 )  ×  ( 1 ... 𝑁 ) ) ) ) | 
						
							| 12 | 4 5 5 6 7 11 | smatrcl | ⊢ ( 𝜑  →  𝑆  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) ) ) | 
						
							| 13 |  | fzfi | ⊢ ( 1 ... ( 𝑁  −  1 ) )  ∈  Fin | 
						
							| 14 | 1 2 | matrcl | ⊢ ( 𝑀  ∈  𝐵  →  ( ( 1 ... 𝑁 )  ∈  Fin  ∧  𝑅  ∈  V ) ) | 
						
							| 15 | 14 | simprd | ⊢ ( 𝑀  ∈  𝐵  →  𝑅  ∈  V ) | 
						
							| 16 | 8 15 | syl | ⊢ ( 𝜑  →  𝑅  ∈  V ) | 
						
							| 17 |  | eqid | ⊢ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 )  =  ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) | 
						
							| 18 | 17 9 | matbas2 | ⊢ ( ( ( 1 ... ( 𝑁  −  1 ) )  ∈  Fin  ∧  𝑅  ∈  V )  →  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) )  =  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) ) | 
						
							| 19 | 13 16 18 | sylancr | ⊢ ( 𝜑  →  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) )  =  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) ) | 
						
							| 20 | 19 | eleq2d | ⊢ ( 𝜑  →  ( 𝑆  ∈  ( ( Base ‘ 𝑅 )  ↑m  ( ( 1 ... ( 𝑁  −  1 ) )  ×  ( 1 ... ( 𝑁  −  1 ) ) ) )  ↔  𝑆  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) ) ) | 
						
							| 21 | 12 20 | mpbid | ⊢ ( 𝜑  →  𝑆  ∈  ( Base ‘ ( ( 1 ... ( 𝑁  −  1 ) )  Mat  𝑅 ) ) ) | 
						
							| 22 | 21 3 | eleqtrrdi | ⊢ ( 𝜑  →  𝑆  ∈  𝐶 ) |