| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smatcl.a |
⊢ 𝐴 = ( ( 1 ... 𝑁 ) Mat 𝑅 ) |
| 2 |
|
smatcl.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
smatcl.c |
⊢ 𝐶 = ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) |
| 4 |
|
smatcl.s |
⊢ 𝑆 = ( 𝐾 ( subMat1 ‘ 𝑀 ) 𝐿 ) |
| 5 |
|
smatcl.n |
⊢ ( 𝜑 → 𝑁 ∈ ℕ ) |
| 6 |
|
smatcl.k |
⊢ ( 𝜑 → 𝐾 ∈ ( 1 ... 𝑁 ) ) |
| 7 |
|
smatcl.l |
⊢ ( 𝜑 → 𝐿 ∈ ( 1 ... 𝑁 ) ) |
| 8 |
|
smatcl.m |
⊢ ( 𝜑 → 𝑀 ∈ 𝐵 ) |
| 9 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 10 |
1 9 2
|
matbas2i |
⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( 1 ... 𝑁 ) × ( 1 ... 𝑁 ) ) ) ) |
| 11 |
8 10
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( 1 ... 𝑁 ) × ( 1 ... 𝑁 ) ) ) ) |
| 12 |
4 5 5 6 7 11
|
smatrcl |
⊢ ( 𝜑 → 𝑆 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) ) |
| 13 |
|
fzfi |
⊢ ( 1 ... ( 𝑁 − 1 ) ) ∈ Fin |
| 14 |
1 2
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( ( 1 ... 𝑁 ) ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 15 |
14
|
simprd |
⊢ ( 𝑀 ∈ 𝐵 → 𝑅 ∈ V ) |
| 16 |
8 15
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 17 |
|
eqid |
⊢ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) = ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) |
| 18 |
17 9
|
matbas2 |
⊢ ( ( ( 1 ... ( 𝑁 − 1 ) ) ∈ Fin ∧ 𝑅 ∈ V ) → ( ( Base ‘ 𝑅 ) ↑m ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) = ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) ) |
| 19 |
13 16 18
|
sylancr |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) ↑m ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) = ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) ) |
| 20 |
19
|
eleq2d |
⊢ ( 𝜑 → ( 𝑆 ∈ ( ( Base ‘ 𝑅 ) ↑m ( ( 1 ... ( 𝑁 − 1 ) ) × ( 1 ... ( 𝑁 − 1 ) ) ) ) ↔ 𝑆 ∈ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) ) ) |
| 21 |
12 20
|
mpbid |
⊢ ( 𝜑 → 𝑆 ∈ ( Base ‘ ( ( 1 ... ( 𝑁 − 1 ) ) Mat 𝑅 ) ) ) |
| 22 |
21 3
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑆 ∈ 𝐶 ) |