Metamath Proof Explorer


Theorem matmpo

Description: Write a square matrix as a mapping operation. (Contributed by Thierry Arnoux, 16-Aug-2020)

Ref Expression
Hypotheses matmpo.a 𝐴 = ( 𝑁 Mat 𝑅 )
matmpo.n 𝐵 = ( Base ‘ 𝐴 )
Assertion matmpo ( 𝑀𝐵𝑀 = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑖 𝑀 𝑗 ) ) )

Proof

Step Hyp Ref Expression
1 matmpo.a 𝐴 = ( 𝑁 Mat 𝑅 )
2 matmpo.n 𝐵 = ( Base ‘ 𝐴 )
3 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
4 1 3 2 matbas2i ( 𝑀𝐵𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) )
5 elmapfn ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑀 Fn ( 𝑁 × 𝑁 ) )
6 4 5 syl ( 𝑀𝐵𝑀 Fn ( 𝑁 × 𝑁 ) )
7 fnov ( 𝑀 Fn ( 𝑁 × 𝑁 ) ↔ 𝑀 = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑖 𝑀 𝑗 ) ) )
8 6 7 sylib ( 𝑀𝐵𝑀 = ( 𝑖𝑁 , 𝑗𝑁 ↦ ( 𝑖 𝑀 𝑗 ) ) )