Description: Write a square matrix as a mapping operation. (Contributed by Thierry Arnoux, 16-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | matmpo.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
matmpo.n | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | ||
Assertion | matmpo | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 𝑀 𝑗 ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matmpo.a | ⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) | |
2 | matmpo.n | ⊢ 𝐵 = ( Base ‘ 𝐴 ) | |
3 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
4 | 1 3 2 | matbas2i | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) ) |
5 | elmapfn | ⊢ ( 𝑀 ∈ ( ( Base ‘ 𝑅 ) ↑m ( 𝑁 × 𝑁 ) ) → 𝑀 Fn ( 𝑁 × 𝑁 ) ) | |
6 | 4 5 | syl | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 Fn ( 𝑁 × 𝑁 ) ) |
7 | fnov | ⊢ ( 𝑀 Fn ( 𝑁 × 𝑁 ) ↔ 𝑀 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 𝑀 𝑗 ) ) ) | |
8 | 6 7 | sylib | ⊢ ( 𝑀 ∈ 𝐵 → 𝑀 = ( 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑁 ↦ ( 𝑖 𝑀 𝑗 ) ) ) |