Metamath Proof Explorer


Theorem matmpo

Description: Write a square matrix as a mapping operation. (Contributed by Thierry Arnoux, 16-Aug-2020)

Ref Expression
Hypotheses matmpo.a
|- A = ( N Mat R )
matmpo.n
|- B = ( Base ` A )
Assertion matmpo
|- ( M e. B -> M = ( i e. N , j e. N |-> ( i M j ) ) )

Proof

Step Hyp Ref Expression
1 matmpo.a
 |-  A = ( N Mat R )
2 matmpo.n
 |-  B = ( Base ` A )
3 eqid
 |-  ( Base ` R ) = ( Base ` R )
4 1 3 2 matbas2i
 |-  ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) )
5 elmapfn
 |-  ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M Fn ( N X. N ) )
6 4 5 syl
 |-  ( M e. B -> M Fn ( N X. N ) )
7 fnov
 |-  ( M Fn ( N X. N ) <-> M = ( i e. N , j e. N |-> ( i M j ) ) )
8 6 7 sylib
 |-  ( M e. B -> M = ( i e. N , j e. N |-> ( i M j ) ) )