Description: Write a square matrix as a mapping operation. (Contributed by Thierry Arnoux, 16-Aug-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | matmpo.a | |- A = ( N Mat R ) |
|
matmpo.n | |- B = ( Base ` A ) |
||
Assertion | matmpo | |- ( M e. B -> M = ( i e. N , j e. N |-> ( i M j ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matmpo.a | |- A = ( N Mat R ) |
|
2 | matmpo.n | |- B = ( Base ` A ) |
|
3 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
4 | 1 3 2 | matbas2i | |- ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
5 | elmapfn | |- ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M Fn ( N X. N ) ) |
|
6 | 4 5 | syl | |- ( M e. B -> M Fn ( N X. N ) ) |
7 | fnov | |- ( M Fn ( N X. N ) <-> M = ( i e. N , j e. N |-> ( i M j ) ) ) |
|
8 | 6 7 | sylib | |- ( M e. B -> M = ( i e. N , j e. N |-> ( i M j ) ) ) |