Step |
Hyp |
Ref |
Expression |
1 |
|
1smat1.1 |
|- .1. = ( 1r ` ( ( 1 ... N ) Mat R ) ) |
2 |
|
1smat1.r |
|- ( ph -> R e. Ring ) |
3 |
|
1smat1.n |
|- ( ph -> N e. NN ) |
4 |
|
1smat1.i |
|- ( ph -> I e. ( 1 ... N ) ) |
5 |
|
eqid |
|- ( I ( subMat1 ` .1. ) I ) = ( I ( subMat1 ` .1. ) I ) |
6 |
3
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> N e. NN ) |
7 |
4
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> I e. ( 1 ... N ) ) |
8 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
9 |
|
eqid |
|- ( ( 1 ... N ) Mat R ) = ( ( 1 ... N ) Mat R ) |
10 |
|
eqid |
|- ( Base ` ( ( 1 ... N ) Mat R ) ) = ( Base ` ( ( 1 ... N ) Mat R ) ) |
11 |
9 10 1
|
mat1bas |
|- ( ( R e. Ring /\ ( 1 ... N ) e. Fin ) -> .1. e. ( Base ` ( ( 1 ... N ) Mat R ) ) ) |
12 |
2 8 11
|
sylancl |
|- ( ph -> .1. e. ( Base ` ( ( 1 ... N ) Mat R ) ) ) |
13 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
14 |
9 13
|
matbas2 |
|- ( ( ( 1 ... N ) e. Fin /\ R e. Ring ) -> ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) = ( Base ` ( ( 1 ... N ) Mat R ) ) ) |
15 |
8 2 14
|
sylancr |
|- ( ph -> ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) = ( Base ` ( ( 1 ... N ) Mat R ) ) ) |
16 |
12 15
|
eleqtrrd |
|- ( ph -> .1. e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) |
17 |
16
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> .1. e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) |
18 |
|
fz1ssnn |
|- ( 1 ... ( N - 1 ) ) C_ NN |
19 |
|
simprl |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ( 1 ... ( N - 1 ) ) ) |
20 |
18 19
|
sselid |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. NN ) |
21 |
|
simprr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ( 1 ... ( N - 1 ) ) ) |
22 |
18 21
|
sselid |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. NN ) |
23 |
|
eqidd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( i < I , i , ( i + 1 ) ) = if ( i < I , i , ( i + 1 ) ) ) |
24 |
|
eqidd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( j < I , j , ( j + 1 ) ) = if ( j < I , j , ( j + 1 ) ) ) |
25 |
5 6 6 7 7 17 20 22 23 24
|
smatlem |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( I ( subMat1 ` .1. ) I ) j ) = ( if ( i < I , i , ( i + 1 ) ) .1. if ( j < I , j , ( j + 1 ) ) ) ) |
26 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
27 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
28 |
8
|
a1i |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( 1 ... N ) e. Fin ) |
29 |
2
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> R e. Ring ) |
30 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
31 |
20 30
|
eleqtrdi |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ( ZZ>= ` 1 ) ) |
32 |
|
fznatpl1 |
|- ( ( N e. NN /\ i e. ( 1 ... ( N - 1 ) ) ) -> ( i + 1 ) e. ( 1 ... N ) ) |
33 |
6 19 32
|
syl2anc |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i + 1 ) e. ( 1 ... N ) ) |
34 |
|
peano2fzr |
|- ( ( i e. ( ZZ>= ` 1 ) /\ ( i + 1 ) e. ( 1 ... N ) ) -> i e. ( 1 ... N ) ) |
35 |
31 33 34
|
syl2anc |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ( 1 ... N ) ) |
36 |
35 33
|
jca |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i e. ( 1 ... N ) /\ ( i + 1 ) e. ( 1 ... N ) ) ) |
37 |
|
eleq1 |
|- ( i = if ( i < I , i , ( i + 1 ) ) -> ( i e. ( 1 ... N ) <-> if ( i < I , i , ( i + 1 ) ) e. ( 1 ... N ) ) ) |
38 |
|
eleq1 |
|- ( ( i + 1 ) = if ( i < I , i , ( i + 1 ) ) -> ( ( i + 1 ) e. ( 1 ... N ) <-> if ( i < I , i , ( i + 1 ) ) e. ( 1 ... N ) ) ) |
39 |
37 38
|
ifboth |
|- ( ( i e. ( 1 ... N ) /\ ( i + 1 ) e. ( 1 ... N ) ) -> if ( i < I , i , ( i + 1 ) ) e. ( 1 ... N ) ) |
40 |
36 39
|
syl |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( i < I , i , ( i + 1 ) ) e. ( 1 ... N ) ) |
41 |
22 30
|
eleqtrdi |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ( ZZ>= ` 1 ) ) |
42 |
|
fznatpl1 |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( j + 1 ) e. ( 1 ... N ) ) |
43 |
6 21 42
|
syl2anc |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( j + 1 ) e. ( 1 ... N ) ) |
44 |
|
peano2fzr |
|- ( ( j e. ( ZZ>= ` 1 ) /\ ( j + 1 ) e. ( 1 ... N ) ) -> j e. ( 1 ... N ) ) |
45 |
41 43 44
|
syl2anc |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ( 1 ... N ) ) |
46 |
45 43
|
jca |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( j e. ( 1 ... N ) /\ ( j + 1 ) e. ( 1 ... N ) ) ) |
47 |
|
eleq1 |
|- ( j = if ( j < I , j , ( j + 1 ) ) -> ( j e. ( 1 ... N ) <-> if ( j < I , j , ( j + 1 ) ) e. ( 1 ... N ) ) ) |
48 |
|
eleq1 |
|- ( ( j + 1 ) = if ( j < I , j , ( j + 1 ) ) -> ( ( j + 1 ) e. ( 1 ... N ) <-> if ( j < I , j , ( j + 1 ) ) e. ( 1 ... N ) ) ) |
49 |
47 48
|
ifboth |
|- ( ( j e. ( 1 ... N ) /\ ( j + 1 ) e. ( 1 ... N ) ) -> if ( j < I , j , ( j + 1 ) ) e. ( 1 ... N ) ) |
50 |
46 49
|
syl |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( j < I , j , ( j + 1 ) ) e. ( 1 ... N ) ) |
51 |
9 26 27 28 29 40 50 1
|
mat1ov |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( if ( i < I , i , ( i + 1 ) ) .1. if ( j < I , j , ( j + 1 ) ) ) = if ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) |
52 |
|
simpr |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> i < I ) |
53 |
52
|
iftrued |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> if ( i < I , i , ( i + 1 ) ) = i ) |
54 |
53
|
eqeq1d |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> i = if ( j < I , j , ( j + 1 ) ) ) ) |
55 |
|
simpr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ j < I ) -> j < I ) |
56 |
55
|
iftrued |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ j < I ) -> if ( j < I , j , ( j + 1 ) ) = j ) |
57 |
56
|
eqeq2d |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ j < I ) -> ( i = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
58 |
|
simpr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> -. j < I ) |
59 |
58
|
iffalsed |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> if ( j < I , j , ( j + 1 ) ) = ( j + 1 ) ) |
60 |
59
|
eqeq2d |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> ( i = if ( j < I , j , ( j + 1 ) ) <-> i = ( j + 1 ) ) ) |
61 |
20
|
nnred |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. RR ) |
62 |
61
|
ad2antrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i e. RR ) |
63 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
64 |
63 4
|
sselid |
|- ( ph -> I e. NN ) |
65 |
64
|
nnred |
|- ( ph -> I e. RR ) |
66 |
65
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> I e. RR ) |
67 |
22
|
nnred |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. RR ) |
68 |
67
|
ad2antrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> j e. RR ) |
69 |
|
1red |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> 1 e. RR ) |
70 |
68 69
|
readdcld |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> ( j + 1 ) e. RR ) |
71 |
52
|
adantr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i < I ) |
72 |
64
|
nnzd |
|- ( ph -> I e. ZZ ) |
73 |
72
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> I e. ZZ ) |
74 |
22
|
nnzd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ZZ ) |
75 |
74
|
ad2antrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> j e. ZZ ) |
76 |
66 68 58
|
nltled |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> I <_ j ) |
77 |
|
zleltp1 |
|- ( ( I e. ZZ /\ j e. ZZ ) -> ( I <_ j <-> I < ( j + 1 ) ) ) |
78 |
77
|
biimpa |
|- ( ( ( I e. ZZ /\ j e. ZZ ) /\ I <_ j ) -> I < ( j + 1 ) ) |
79 |
73 75 76 78
|
syl21anc |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> I < ( j + 1 ) ) |
80 |
62 66 70 71 79
|
lttrd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i < ( j + 1 ) ) |
81 |
62 80
|
ltned |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i =/= ( j + 1 ) ) |
82 |
81
|
neneqd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> -. i = ( j + 1 ) ) |
83 |
62 66 68 71 76
|
ltletrd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i < j ) |
84 |
62 83
|
ltned |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i =/= j ) |
85 |
84
|
neneqd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> -. i = j ) |
86 |
82 85
|
2falsed |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> ( i = ( j + 1 ) <-> i = j ) ) |
87 |
60 86
|
bitrd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> ( i = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
88 |
57 87
|
pm2.61dan |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> ( i = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
89 |
54 88
|
bitrd |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
90 |
|
simpr |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> -. i < I ) |
91 |
90
|
iffalsed |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> if ( i < I , i , ( i + 1 ) ) = ( i + 1 ) ) |
92 |
91
|
eqeq1d |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) ) ) |
93 |
|
simpr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j < I ) |
94 |
93
|
iftrued |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> if ( j < I , j , ( j + 1 ) ) = j ) |
95 |
94
|
eqeq2d |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> ( i + 1 ) = j ) ) |
96 |
67
|
ad2antrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j e. RR ) |
97 |
65
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> I e. RR ) |
98 |
61
|
ad2antrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> i e. RR ) |
99 |
|
1red |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> 1 e. RR ) |
100 |
98 99
|
readdcld |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( i + 1 ) e. RR ) |
101 |
72
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> I e. ZZ ) |
102 |
20
|
nnzd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ZZ ) |
103 |
102
|
ad2antrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> i e. ZZ ) |
104 |
90
|
adantr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> -. i < I ) |
105 |
97 98 104
|
nltled |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> I <_ i ) |
106 |
|
zleltp1 |
|- ( ( I e. ZZ /\ i e. ZZ ) -> ( I <_ i <-> I < ( i + 1 ) ) ) |
107 |
106
|
biimpa |
|- ( ( ( I e. ZZ /\ i e. ZZ ) /\ I <_ i ) -> I < ( i + 1 ) ) |
108 |
101 103 105 107
|
syl21anc |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> I < ( i + 1 ) ) |
109 |
96 97 100 93 108
|
lttrd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j < ( i + 1 ) ) |
110 |
96 109
|
ltned |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j =/= ( i + 1 ) ) |
111 |
110
|
necomd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( i + 1 ) =/= j ) |
112 |
111
|
neneqd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> -. ( i + 1 ) = j ) |
113 |
96 97 98 93 105
|
ltletrd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j < i ) |
114 |
96 113
|
ltned |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j =/= i ) |
115 |
114
|
necomd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> i =/= j ) |
116 |
115
|
neneqd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> -. i = j ) |
117 |
112 116
|
2falsed |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( ( i + 1 ) = j <-> i = j ) ) |
118 |
95 117
|
bitrd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
119 |
|
simpr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> -. j < I ) |
120 |
119
|
iffalsed |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> if ( j < I , j , ( j + 1 ) ) = ( j + 1 ) ) |
121 |
120
|
eqeq2d |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> ( i + 1 ) = ( j + 1 ) ) ) |
122 |
20
|
nncnd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. CC ) |
123 |
122
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> i e. CC ) |
124 |
22
|
nncnd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. CC ) |
125 |
124
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> j e. CC ) |
126 |
|
1cnd |
|- ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> 1 e. CC ) |
127 |
|
simpr |
|- ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> ( i + 1 ) = ( j + 1 ) ) |
128 |
123 125 126 127
|
addcan2ad |
|- ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> i = j ) |
129 |
|
simpr |
|- ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ i = j ) -> i = j ) |
130 |
129
|
oveq1d |
|- ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ i = j ) -> ( i + 1 ) = ( j + 1 ) ) |
131 |
128 130
|
impbida |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> ( ( i + 1 ) = ( j + 1 ) <-> i = j ) ) |
132 |
121 131
|
bitrd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
133 |
118 132
|
pm2.61dan |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
134 |
92 133
|
bitrd |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
135 |
89 134
|
pm2.61dan |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
136 |
135
|
ifbid |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) , ( 1r ` R ) , ( 0g ` R ) ) = if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) |
137 |
|
eqid |
|- ( ( 1 ... ( N - 1 ) ) Mat R ) = ( ( 1 ... ( N - 1 ) ) Mat R ) |
138 |
|
fzfid |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( 1 ... ( N - 1 ) ) e. Fin ) |
139 |
|
eqid |
|- ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) = ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) |
140 |
137 26 27 138 29 19 21 139
|
mat1ov |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) = if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) |
141 |
136 140
|
eqtr4d |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) , ( 1r ` R ) , ( 0g ` R ) ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) |
142 |
25 51 141
|
3eqtrd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( I ( subMat1 ` .1. ) I ) j ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) |
143 |
142
|
ralrimivva |
|- ( ph -> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` .1. ) I ) j ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) |
144 |
5 3 3 4 4 16
|
smatrcl |
|- ( ph -> ( I ( subMat1 ` .1. ) I ) e. ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |
145 |
|
elmapfn |
|- ( ( I ( subMat1 ` .1. ) I ) e. ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) -> ( I ( subMat1 ` .1. ) I ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) |
146 |
144 145
|
syl |
|- ( ph -> ( I ( subMat1 ` .1. ) I ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) |
147 |
|
fzfi |
|- ( 1 ... ( N - 1 ) ) e. Fin |
148 |
|
eqid |
|- ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) |
149 |
137 148 139
|
mat1bas |
|- ( ( R e. Ring /\ ( 1 ... ( N - 1 ) ) e. Fin ) -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
150 |
2 147 149
|
sylancl |
|- ( ph -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
151 |
137 13
|
matbas2 |
|- ( ( ( 1 ... ( N - 1 ) ) e. Fin /\ R e. Ring ) -> ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
152 |
147 2 151
|
sylancr |
|- ( ph -> ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
153 |
150 152
|
eleqtrrd |
|- ( ph -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) e. ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |
154 |
|
elmapfn |
|- ( ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) e. ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) |
155 |
153 154
|
syl |
|- ( ph -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) |
156 |
|
eqfnov2 |
|- ( ( ( I ( subMat1 ` .1. ) I ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) /\ ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) -> ( ( I ( subMat1 ` .1. ) I ) = ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) <-> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` .1. ) I ) j ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) ) |
157 |
146 155 156
|
syl2anc |
|- ( ph -> ( ( I ( subMat1 ` .1. ) I ) = ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) <-> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` .1. ) I ) j ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) ) |
158 |
143 157
|
mpbird |
|- ( ph -> ( I ( subMat1 ` .1. ) I ) = ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |