| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1smat1.1 |
|- .1. = ( 1r ` ( ( 1 ... N ) Mat R ) ) |
| 2 |
|
1smat1.r |
|- ( ph -> R e. Ring ) |
| 3 |
|
1smat1.n |
|- ( ph -> N e. NN ) |
| 4 |
|
1smat1.i |
|- ( ph -> I e. ( 1 ... N ) ) |
| 5 |
|
eqid |
|- ( I ( subMat1 ` .1. ) I ) = ( I ( subMat1 ` .1. ) I ) |
| 6 |
3
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> N e. NN ) |
| 7 |
4
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> I e. ( 1 ... N ) ) |
| 8 |
|
fzfi |
|- ( 1 ... N ) e. Fin |
| 9 |
|
eqid |
|- ( ( 1 ... N ) Mat R ) = ( ( 1 ... N ) Mat R ) |
| 10 |
|
eqid |
|- ( Base ` ( ( 1 ... N ) Mat R ) ) = ( Base ` ( ( 1 ... N ) Mat R ) ) |
| 11 |
9 10 1
|
mat1bas |
|- ( ( R e. Ring /\ ( 1 ... N ) e. Fin ) -> .1. e. ( Base ` ( ( 1 ... N ) Mat R ) ) ) |
| 12 |
2 8 11
|
sylancl |
|- ( ph -> .1. e. ( Base ` ( ( 1 ... N ) Mat R ) ) ) |
| 13 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 14 |
9 13
|
matbas2 |
|- ( ( ( 1 ... N ) e. Fin /\ R e. Ring ) -> ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) = ( Base ` ( ( 1 ... N ) Mat R ) ) ) |
| 15 |
8 2 14
|
sylancr |
|- ( ph -> ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) = ( Base ` ( ( 1 ... N ) Mat R ) ) ) |
| 16 |
12 15
|
eleqtrrd |
|- ( ph -> .1. e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) |
| 17 |
16
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> .1. e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) |
| 18 |
|
fz1ssnn |
|- ( 1 ... ( N - 1 ) ) C_ NN |
| 19 |
|
simprl |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ( 1 ... ( N - 1 ) ) ) |
| 20 |
18 19
|
sselid |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. NN ) |
| 21 |
|
simprr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ( 1 ... ( N - 1 ) ) ) |
| 22 |
18 21
|
sselid |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. NN ) |
| 23 |
|
eqidd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( i < I , i , ( i + 1 ) ) = if ( i < I , i , ( i + 1 ) ) ) |
| 24 |
|
eqidd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( j < I , j , ( j + 1 ) ) = if ( j < I , j , ( j + 1 ) ) ) |
| 25 |
5 6 6 7 7 17 20 22 23 24
|
smatlem |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( I ( subMat1 ` .1. ) I ) j ) = ( if ( i < I , i , ( i + 1 ) ) .1. if ( j < I , j , ( j + 1 ) ) ) ) |
| 26 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 27 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 28 |
8
|
a1i |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( 1 ... N ) e. Fin ) |
| 29 |
2
|
adantr |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> R e. Ring ) |
| 30 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
| 31 |
20 30
|
eleqtrdi |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ( ZZ>= ` 1 ) ) |
| 32 |
|
fznatpl1 |
|- ( ( N e. NN /\ i e. ( 1 ... ( N - 1 ) ) ) -> ( i + 1 ) e. ( 1 ... N ) ) |
| 33 |
6 19 32
|
syl2anc |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i + 1 ) e. ( 1 ... N ) ) |
| 34 |
|
peano2fzr |
|- ( ( i e. ( ZZ>= ` 1 ) /\ ( i + 1 ) e. ( 1 ... N ) ) -> i e. ( 1 ... N ) ) |
| 35 |
31 33 34
|
syl2anc |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ( 1 ... N ) ) |
| 36 |
35 33
|
jca |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i e. ( 1 ... N ) /\ ( i + 1 ) e. ( 1 ... N ) ) ) |
| 37 |
|
eleq1 |
|- ( i = if ( i < I , i , ( i + 1 ) ) -> ( i e. ( 1 ... N ) <-> if ( i < I , i , ( i + 1 ) ) e. ( 1 ... N ) ) ) |
| 38 |
|
eleq1 |
|- ( ( i + 1 ) = if ( i < I , i , ( i + 1 ) ) -> ( ( i + 1 ) e. ( 1 ... N ) <-> if ( i < I , i , ( i + 1 ) ) e. ( 1 ... N ) ) ) |
| 39 |
37 38
|
ifboth |
|- ( ( i e. ( 1 ... N ) /\ ( i + 1 ) e. ( 1 ... N ) ) -> if ( i < I , i , ( i + 1 ) ) e. ( 1 ... N ) ) |
| 40 |
36 39
|
syl |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( i < I , i , ( i + 1 ) ) e. ( 1 ... N ) ) |
| 41 |
22 30
|
eleqtrdi |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ( ZZ>= ` 1 ) ) |
| 42 |
|
fznatpl1 |
|- ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( j + 1 ) e. ( 1 ... N ) ) |
| 43 |
6 21 42
|
syl2anc |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( j + 1 ) e. ( 1 ... N ) ) |
| 44 |
|
peano2fzr |
|- ( ( j e. ( ZZ>= ` 1 ) /\ ( j + 1 ) e. ( 1 ... N ) ) -> j e. ( 1 ... N ) ) |
| 45 |
41 43 44
|
syl2anc |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ( 1 ... N ) ) |
| 46 |
45 43
|
jca |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( j e. ( 1 ... N ) /\ ( j + 1 ) e. ( 1 ... N ) ) ) |
| 47 |
|
eleq1 |
|- ( j = if ( j < I , j , ( j + 1 ) ) -> ( j e. ( 1 ... N ) <-> if ( j < I , j , ( j + 1 ) ) e. ( 1 ... N ) ) ) |
| 48 |
|
eleq1 |
|- ( ( j + 1 ) = if ( j < I , j , ( j + 1 ) ) -> ( ( j + 1 ) e. ( 1 ... N ) <-> if ( j < I , j , ( j + 1 ) ) e. ( 1 ... N ) ) ) |
| 49 |
47 48
|
ifboth |
|- ( ( j e. ( 1 ... N ) /\ ( j + 1 ) e. ( 1 ... N ) ) -> if ( j < I , j , ( j + 1 ) ) e. ( 1 ... N ) ) |
| 50 |
46 49
|
syl |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( j < I , j , ( j + 1 ) ) e. ( 1 ... N ) ) |
| 51 |
9 26 27 28 29 40 50 1
|
mat1ov |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( if ( i < I , i , ( i + 1 ) ) .1. if ( j < I , j , ( j + 1 ) ) ) = if ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 52 |
|
simpr |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> i < I ) |
| 53 |
52
|
iftrued |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> if ( i < I , i , ( i + 1 ) ) = i ) |
| 54 |
53
|
eqeq1d |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> i = if ( j < I , j , ( j + 1 ) ) ) ) |
| 55 |
|
simpr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ j < I ) -> j < I ) |
| 56 |
55
|
iftrued |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ j < I ) -> if ( j < I , j , ( j + 1 ) ) = j ) |
| 57 |
56
|
eqeq2d |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ j < I ) -> ( i = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
| 58 |
|
simpr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> -. j < I ) |
| 59 |
58
|
iffalsed |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> if ( j < I , j , ( j + 1 ) ) = ( j + 1 ) ) |
| 60 |
59
|
eqeq2d |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> ( i = if ( j < I , j , ( j + 1 ) ) <-> i = ( j + 1 ) ) ) |
| 61 |
20
|
nnred |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. RR ) |
| 62 |
61
|
ad2antrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i e. RR ) |
| 63 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
| 64 |
63 4
|
sselid |
|- ( ph -> I e. NN ) |
| 65 |
64
|
nnred |
|- ( ph -> I e. RR ) |
| 66 |
65
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> I e. RR ) |
| 67 |
22
|
nnred |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. RR ) |
| 68 |
67
|
ad2antrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> j e. RR ) |
| 69 |
|
1red |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> 1 e. RR ) |
| 70 |
68 69
|
readdcld |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> ( j + 1 ) e. RR ) |
| 71 |
52
|
adantr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i < I ) |
| 72 |
64
|
nnzd |
|- ( ph -> I e. ZZ ) |
| 73 |
72
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> I e. ZZ ) |
| 74 |
22
|
nnzd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ZZ ) |
| 75 |
74
|
ad2antrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> j e. ZZ ) |
| 76 |
66 68 58
|
nltled |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> I <_ j ) |
| 77 |
|
zleltp1 |
|- ( ( I e. ZZ /\ j e. ZZ ) -> ( I <_ j <-> I < ( j + 1 ) ) ) |
| 78 |
77
|
biimpa |
|- ( ( ( I e. ZZ /\ j e. ZZ ) /\ I <_ j ) -> I < ( j + 1 ) ) |
| 79 |
73 75 76 78
|
syl21anc |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> I < ( j + 1 ) ) |
| 80 |
62 66 70 71 79
|
lttrd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i < ( j + 1 ) ) |
| 81 |
62 80
|
ltned |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i =/= ( j + 1 ) ) |
| 82 |
81
|
neneqd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> -. i = ( j + 1 ) ) |
| 83 |
62 66 68 71 76
|
ltletrd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i < j ) |
| 84 |
62 83
|
ltned |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i =/= j ) |
| 85 |
84
|
neneqd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> -. i = j ) |
| 86 |
82 85
|
2falsed |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> ( i = ( j + 1 ) <-> i = j ) ) |
| 87 |
60 86
|
bitrd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> ( i = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
| 88 |
57 87
|
pm2.61dan |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> ( i = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
| 89 |
54 88
|
bitrd |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
| 90 |
|
simpr |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> -. i < I ) |
| 91 |
90
|
iffalsed |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> if ( i < I , i , ( i + 1 ) ) = ( i + 1 ) ) |
| 92 |
91
|
eqeq1d |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) ) ) |
| 93 |
|
simpr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j < I ) |
| 94 |
93
|
iftrued |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> if ( j < I , j , ( j + 1 ) ) = j ) |
| 95 |
94
|
eqeq2d |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> ( i + 1 ) = j ) ) |
| 96 |
67
|
ad2antrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j e. RR ) |
| 97 |
65
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> I e. RR ) |
| 98 |
61
|
ad2antrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> i e. RR ) |
| 99 |
|
1red |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> 1 e. RR ) |
| 100 |
98 99
|
readdcld |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( i + 1 ) e. RR ) |
| 101 |
72
|
ad3antrrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> I e. ZZ ) |
| 102 |
20
|
nnzd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ZZ ) |
| 103 |
102
|
ad2antrr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> i e. ZZ ) |
| 104 |
90
|
adantr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> -. i < I ) |
| 105 |
97 98 104
|
nltled |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> I <_ i ) |
| 106 |
|
zleltp1 |
|- ( ( I e. ZZ /\ i e. ZZ ) -> ( I <_ i <-> I < ( i + 1 ) ) ) |
| 107 |
106
|
biimpa |
|- ( ( ( I e. ZZ /\ i e. ZZ ) /\ I <_ i ) -> I < ( i + 1 ) ) |
| 108 |
101 103 105 107
|
syl21anc |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> I < ( i + 1 ) ) |
| 109 |
96 97 100 93 108
|
lttrd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j < ( i + 1 ) ) |
| 110 |
96 109
|
ltned |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j =/= ( i + 1 ) ) |
| 111 |
110
|
necomd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( i + 1 ) =/= j ) |
| 112 |
111
|
neneqd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> -. ( i + 1 ) = j ) |
| 113 |
96 97 98 93 105
|
ltletrd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j < i ) |
| 114 |
96 113
|
ltned |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j =/= i ) |
| 115 |
114
|
necomd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> i =/= j ) |
| 116 |
115
|
neneqd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> -. i = j ) |
| 117 |
112 116
|
2falsed |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( ( i + 1 ) = j <-> i = j ) ) |
| 118 |
95 117
|
bitrd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
| 119 |
|
simpr |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> -. j < I ) |
| 120 |
119
|
iffalsed |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> if ( j < I , j , ( j + 1 ) ) = ( j + 1 ) ) |
| 121 |
120
|
eqeq2d |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> ( i + 1 ) = ( j + 1 ) ) ) |
| 122 |
20
|
nncnd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. CC ) |
| 123 |
122
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> i e. CC ) |
| 124 |
22
|
nncnd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. CC ) |
| 125 |
124
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> j e. CC ) |
| 126 |
|
1cnd |
|- ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> 1 e. CC ) |
| 127 |
|
simpr |
|- ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> ( i + 1 ) = ( j + 1 ) ) |
| 128 |
123 125 126 127
|
addcan2ad |
|- ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> i = j ) |
| 129 |
|
simpr |
|- ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ i = j ) -> i = j ) |
| 130 |
129
|
oveq1d |
|- ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ i = j ) -> ( i + 1 ) = ( j + 1 ) ) |
| 131 |
128 130
|
impbida |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> ( ( i + 1 ) = ( j + 1 ) <-> i = j ) ) |
| 132 |
121 131
|
bitrd |
|- ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
| 133 |
118 132
|
pm2.61dan |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
| 134 |
92 133
|
bitrd |
|- ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
| 135 |
89 134
|
pm2.61dan |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) |
| 136 |
135
|
ifbid |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) , ( 1r ` R ) , ( 0g ` R ) ) = if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 137 |
|
eqid |
|- ( ( 1 ... ( N - 1 ) ) Mat R ) = ( ( 1 ... ( N - 1 ) ) Mat R ) |
| 138 |
|
fzfid |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( 1 ... ( N - 1 ) ) e. Fin ) |
| 139 |
|
eqid |
|- ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) = ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) |
| 140 |
137 26 27 138 29 19 21 139
|
mat1ov |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) = if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 141 |
136 140
|
eqtr4d |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) , ( 1r ` R ) , ( 0g ` R ) ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) |
| 142 |
25 51 141
|
3eqtrd |
|- ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( I ( subMat1 ` .1. ) I ) j ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) |
| 143 |
142
|
ralrimivva |
|- ( ph -> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` .1. ) I ) j ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) |
| 144 |
5 3 3 4 4 16
|
smatrcl |
|- ( ph -> ( I ( subMat1 ` .1. ) I ) e. ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |
| 145 |
|
elmapfn |
|- ( ( I ( subMat1 ` .1. ) I ) e. ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) -> ( I ( subMat1 ` .1. ) I ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) |
| 146 |
144 145
|
syl |
|- ( ph -> ( I ( subMat1 ` .1. ) I ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) |
| 147 |
|
fzfi |
|- ( 1 ... ( N - 1 ) ) e. Fin |
| 148 |
|
eqid |
|- ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) |
| 149 |
137 148 139
|
mat1bas |
|- ( ( R e. Ring /\ ( 1 ... ( N - 1 ) ) e. Fin ) -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
| 150 |
2 147 149
|
sylancl |
|- ( ph -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
| 151 |
137 13
|
matbas2 |
|- ( ( ( 1 ... ( N - 1 ) ) e. Fin /\ R e. Ring ) -> ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
| 152 |
147 2 151
|
sylancr |
|- ( ph -> ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
| 153 |
150 152
|
eleqtrrd |
|- ( ph -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) e. ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |
| 154 |
|
elmapfn |
|- ( ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) e. ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) |
| 155 |
153 154
|
syl |
|- ( ph -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) |
| 156 |
|
eqfnov2 |
|- ( ( ( I ( subMat1 ` .1. ) I ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) /\ ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) -> ( ( I ( subMat1 ` .1. ) I ) = ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) <-> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` .1. ) I ) j ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) ) |
| 157 |
146 155 156
|
syl2anc |
|- ( ph -> ( ( I ( subMat1 ` .1. ) I ) = ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) <-> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` .1. ) I ) j ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) ) |
| 158 |
143 157
|
mpbird |
|- ( ph -> ( I ( subMat1 ` .1. ) I ) = ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |