| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 1smat1.1 |  |-  .1. = ( 1r ` ( ( 1 ... N ) Mat R ) ) | 
						
							| 2 |  | 1smat1.r |  |-  ( ph -> R e. Ring ) | 
						
							| 3 |  | 1smat1.n |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | 1smat1.i |  |-  ( ph -> I e. ( 1 ... N ) ) | 
						
							| 5 |  | eqid |  |-  ( I ( subMat1 ` .1. ) I ) = ( I ( subMat1 ` .1. ) I ) | 
						
							| 6 | 3 | adantr |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> N e. NN ) | 
						
							| 7 | 4 | adantr |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> I e. ( 1 ... N ) ) | 
						
							| 8 |  | fzfi |  |-  ( 1 ... N ) e. Fin | 
						
							| 9 |  | eqid |  |-  ( ( 1 ... N ) Mat R ) = ( ( 1 ... N ) Mat R ) | 
						
							| 10 |  | eqid |  |-  ( Base ` ( ( 1 ... N ) Mat R ) ) = ( Base ` ( ( 1 ... N ) Mat R ) ) | 
						
							| 11 | 9 10 1 | mat1bas |  |-  ( ( R e. Ring /\ ( 1 ... N ) e. Fin ) -> .1. e. ( Base ` ( ( 1 ... N ) Mat R ) ) ) | 
						
							| 12 | 2 8 11 | sylancl |  |-  ( ph -> .1. e. ( Base ` ( ( 1 ... N ) Mat R ) ) ) | 
						
							| 13 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 14 | 9 13 | matbas2 |  |-  ( ( ( 1 ... N ) e. Fin /\ R e. Ring ) -> ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) = ( Base ` ( ( 1 ... N ) Mat R ) ) ) | 
						
							| 15 | 8 2 14 | sylancr |  |-  ( ph -> ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) = ( Base ` ( ( 1 ... N ) Mat R ) ) ) | 
						
							| 16 | 12 15 | eleqtrrd |  |-  ( ph -> .1. e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> .1. e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) | 
						
							| 18 |  | fz1ssnn |  |-  ( 1 ... ( N - 1 ) ) C_ NN | 
						
							| 19 |  | simprl |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 20 | 18 19 | sselid |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. NN ) | 
						
							| 21 |  | simprr |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ( 1 ... ( N - 1 ) ) ) | 
						
							| 22 | 18 21 | sselid |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. NN ) | 
						
							| 23 |  | eqidd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( i < I , i , ( i + 1 ) ) = if ( i < I , i , ( i + 1 ) ) ) | 
						
							| 24 |  | eqidd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( j < I , j , ( j + 1 ) ) = if ( j < I , j , ( j + 1 ) ) ) | 
						
							| 25 | 5 6 6 7 7 17 20 22 23 24 | smatlem |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( I ( subMat1 ` .1. ) I ) j ) = ( if ( i < I , i , ( i + 1 ) ) .1. if ( j < I , j , ( j + 1 ) ) ) ) | 
						
							| 26 |  | eqid |  |-  ( 1r ` R ) = ( 1r ` R ) | 
						
							| 27 |  | eqid |  |-  ( 0g ` R ) = ( 0g ` R ) | 
						
							| 28 | 8 | a1i |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( 1 ... N ) e. Fin ) | 
						
							| 29 | 2 | adantr |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> R e. Ring ) | 
						
							| 30 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 31 | 20 30 | eleqtrdi |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ( ZZ>= ` 1 ) ) | 
						
							| 32 |  | fznatpl1 |  |-  ( ( N e. NN /\ i e. ( 1 ... ( N - 1 ) ) ) -> ( i + 1 ) e. ( 1 ... N ) ) | 
						
							| 33 | 6 19 32 | syl2anc |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i + 1 ) e. ( 1 ... N ) ) | 
						
							| 34 |  | peano2fzr |  |-  ( ( i e. ( ZZ>= ` 1 ) /\ ( i + 1 ) e. ( 1 ... N ) ) -> i e. ( 1 ... N ) ) | 
						
							| 35 | 31 33 34 | syl2anc |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ( 1 ... N ) ) | 
						
							| 36 | 35 33 | jca |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i e. ( 1 ... N ) /\ ( i + 1 ) e. ( 1 ... N ) ) ) | 
						
							| 37 |  | eleq1 |  |-  ( i = if ( i < I , i , ( i + 1 ) ) -> ( i e. ( 1 ... N ) <-> if ( i < I , i , ( i + 1 ) ) e. ( 1 ... N ) ) ) | 
						
							| 38 |  | eleq1 |  |-  ( ( i + 1 ) = if ( i < I , i , ( i + 1 ) ) -> ( ( i + 1 ) e. ( 1 ... N ) <-> if ( i < I , i , ( i + 1 ) ) e. ( 1 ... N ) ) ) | 
						
							| 39 | 37 38 | ifboth |  |-  ( ( i e. ( 1 ... N ) /\ ( i + 1 ) e. ( 1 ... N ) ) -> if ( i < I , i , ( i + 1 ) ) e. ( 1 ... N ) ) | 
						
							| 40 | 36 39 | syl |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( i < I , i , ( i + 1 ) ) e. ( 1 ... N ) ) | 
						
							| 41 | 22 30 | eleqtrdi |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ( ZZ>= ` 1 ) ) | 
						
							| 42 |  | fznatpl1 |  |-  ( ( N e. NN /\ j e. ( 1 ... ( N - 1 ) ) ) -> ( j + 1 ) e. ( 1 ... N ) ) | 
						
							| 43 | 6 21 42 | syl2anc |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( j + 1 ) e. ( 1 ... N ) ) | 
						
							| 44 |  | peano2fzr |  |-  ( ( j e. ( ZZ>= ` 1 ) /\ ( j + 1 ) e. ( 1 ... N ) ) -> j e. ( 1 ... N ) ) | 
						
							| 45 | 41 43 44 | syl2anc |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ( 1 ... N ) ) | 
						
							| 46 | 45 43 | jca |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( j e. ( 1 ... N ) /\ ( j + 1 ) e. ( 1 ... N ) ) ) | 
						
							| 47 |  | eleq1 |  |-  ( j = if ( j < I , j , ( j + 1 ) ) -> ( j e. ( 1 ... N ) <-> if ( j < I , j , ( j + 1 ) ) e. ( 1 ... N ) ) ) | 
						
							| 48 |  | eleq1 |  |-  ( ( j + 1 ) = if ( j < I , j , ( j + 1 ) ) -> ( ( j + 1 ) e. ( 1 ... N ) <-> if ( j < I , j , ( j + 1 ) ) e. ( 1 ... N ) ) ) | 
						
							| 49 | 47 48 | ifboth |  |-  ( ( j e. ( 1 ... N ) /\ ( j + 1 ) e. ( 1 ... N ) ) -> if ( j < I , j , ( j + 1 ) ) e. ( 1 ... N ) ) | 
						
							| 50 | 46 49 | syl |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( j < I , j , ( j + 1 ) ) e. ( 1 ... N ) ) | 
						
							| 51 | 9 26 27 28 29 40 50 1 | mat1ov |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( if ( i < I , i , ( i + 1 ) ) .1. if ( j < I , j , ( j + 1 ) ) ) = if ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) , ( 1r ` R ) , ( 0g ` R ) ) ) | 
						
							| 52 |  | simpr |  |-  ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> i < I ) | 
						
							| 53 | 52 | iftrued |  |-  ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> if ( i < I , i , ( i + 1 ) ) = i ) | 
						
							| 54 | 53 | eqeq1d |  |-  ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> i = if ( j < I , j , ( j + 1 ) ) ) ) | 
						
							| 55 |  | simpr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ j < I ) -> j < I ) | 
						
							| 56 | 55 | iftrued |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ j < I ) -> if ( j < I , j , ( j + 1 ) ) = j ) | 
						
							| 57 | 56 | eqeq2d |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ j < I ) -> ( i = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) | 
						
							| 58 |  | simpr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> -. j < I ) | 
						
							| 59 | 58 | iffalsed |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> if ( j < I , j , ( j + 1 ) ) = ( j + 1 ) ) | 
						
							| 60 | 59 | eqeq2d |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> ( i = if ( j < I , j , ( j + 1 ) ) <-> i = ( j + 1 ) ) ) | 
						
							| 61 | 20 | nnred |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. RR ) | 
						
							| 62 | 61 | ad2antrr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i e. RR ) | 
						
							| 63 |  | fz1ssnn |  |-  ( 1 ... N ) C_ NN | 
						
							| 64 | 63 4 | sselid |  |-  ( ph -> I e. NN ) | 
						
							| 65 | 64 | nnred |  |-  ( ph -> I e. RR ) | 
						
							| 66 | 65 | ad3antrrr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> I e. RR ) | 
						
							| 67 | 22 | nnred |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. RR ) | 
						
							| 68 | 67 | ad2antrr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> j e. RR ) | 
						
							| 69 |  | 1red |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> 1 e. RR ) | 
						
							| 70 | 68 69 | readdcld |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> ( j + 1 ) e. RR ) | 
						
							| 71 | 52 | adantr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i < I ) | 
						
							| 72 | 64 | nnzd |  |-  ( ph -> I e. ZZ ) | 
						
							| 73 | 72 | ad3antrrr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> I e. ZZ ) | 
						
							| 74 | 22 | nnzd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. ZZ ) | 
						
							| 75 | 74 | ad2antrr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> j e. ZZ ) | 
						
							| 76 | 66 68 58 | nltled |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> I <_ j ) | 
						
							| 77 |  | zleltp1 |  |-  ( ( I e. ZZ /\ j e. ZZ ) -> ( I <_ j <-> I < ( j + 1 ) ) ) | 
						
							| 78 | 77 | biimpa |  |-  ( ( ( I e. ZZ /\ j e. ZZ ) /\ I <_ j ) -> I < ( j + 1 ) ) | 
						
							| 79 | 73 75 76 78 | syl21anc |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> I < ( j + 1 ) ) | 
						
							| 80 | 62 66 70 71 79 | lttrd |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i < ( j + 1 ) ) | 
						
							| 81 | 62 80 | ltned |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i =/= ( j + 1 ) ) | 
						
							| 82 | 81 | neneqd |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> -. i = ( j + 1 ) ) | 
						
							| 83 | 62 66 68 71 76 | ltletrd |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i < j ) | 
						
							| 84 | 62 83 | ltned |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> i =/= j ) | 
						
							| 85 | 84 | neneqd |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> -. i = j ) | 
						
							| 86 | 82 85 | 2falsed |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> ( i = ( j + 1 ) <-> i = j ) ) | 
						
							| 87 | 60 86 | bitrd |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) /\ -. j < I ) -> ( i = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) | 
						
							| 88 | 57 87 | pm2.61dan |  |-  ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> ( i = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) | 
						
							| 89 | 54 88 | bitrd |  |-  ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ i < I ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) | 
						
							| 90 |  | simpr |  |-  ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> -. i < I ) | 
						
							| 91 | 90 | iffalsed |  |-  ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> if ( i < I , i , ( i + 1 ) ) = ( i + 1 ) ) | 
						
							| 92 | 91 | eqeq1d |  |-  ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) ) ) | 
						
							| 93 |  | simpr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j < I ) | 
						
							| 94 | 93 | iftrued |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> if ( j < I , j , ( j + 1 ) ) = j ) | 
						
							| 95 | 94 | eqeq2d |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> ( i + 1 ) = j ) ) | 
						
							| 96 | 67 | ad2antrr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j e. RR ) | 
						
							| 97 | 65 | ad3antrrr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> I e. RR ) | 
						
							| 98 | 61 | ad2antrr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> i e. RR ) | 
						
							| 99 |  | 1red |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> 1 e. RR ) | 
						
							| 100 | 98 99 | readdcld |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( i + 1 ) e. RR ) | 
						
							| 101 | 72 | ad3antrrr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> I e. ZZ ) | 
						
							| 102 | 20 | nnzd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. ZZ ) | 
						
							| 103 | 102 | ad2antrr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> i e. ZZ ) | 
						
							| 104 | 90 | adantr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> -. i < I ) | 
						
							| 105 | 97 98 104 | nltled |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> I <_ i ) | 
						
							| 106 |  | zleltp1 |  |-  ( ( I e. ZZ /\ i e. ZZ ) -> ( I <_ i <-> I < ( i + 1 ) ) ) | 
						
							| 107 | 106 | biimpa |  |-  ( ( ( I e. ZZ /\ i e. ZZ ) /\ I <_ i ) -> I < ( i + 1 ) ) | 
						
							| 108 | 101 103 105 107 | syl21anc |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> I < ( i + 1 ) ) | 
						
							| 109 | 96 97 100 93 108 | lttrd |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j < ( i + 1 ) ) | 
						
							| 110 | 96 109 | ltned |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j =/= ( i + 1 ) ) | 
						
							| 111 | 110 | necomd |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( i + 1 ) =/= j ) | 
						
							| 112 | 111 | neneqd |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> -. ( i + 1 ) = j ) | 
						
							| 113 | 96 97 98 93 105 | ltletrd |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j < i ) | 
						
							| 114 | 96 113 | ltned |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> j =/= i ) | 
						
							| 115 | 114 | necomd |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> i =/= j ) | 
						
							| 116 | 115 | neneqd |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> -. i = j ) | 
						
							| 117 | 112 116 | 2falsed |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( ( i + 1 ) = j <-> i = j ) ) | 
						
							| 118 | 95 117 | bitrd |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ j < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) | 
						
							| 119 |  | simpr |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> -. j < I ) | 
						
							| 120 | 119 | iffalsed |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> if ( j < I , j , ( j + 1 ) ) = ( j + 1 ) ) | 
						
							| 121 | 120 | eqeq2d |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> ( i + 1 ) = ( j + 1 ) ) ) | 
						
							| 122 | 20 | nncnd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> i e. CC ) | 
						
							| 123 | 122 | ad3antrrr |  |-  ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> i e. CC ) | 
						
							| 124 | 22 | nncnd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> j e. CC ) | 
						
							| 125 | 124 | ad3antrrr |  |-  ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> j e. CC ) | 
						
							| 126 |  | 1cnd |  |-  ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> 1 e. CC ) | 
						
							| 127 |  | simpr |  |-  ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> ( i + 1 ) = ( j + 1 ) ) | 
						
							| 128 | 123 125 126 127 | addcan2ad |  |-  ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ ( i + 1 ) = ( j + 1 ) ) -> i = j ) | 
						
							| 129 |  | simpr |  |-  ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ i = j ) -> i = j ) | 
						
							| 130 | 129 | oveq1d |  |-  ( ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) /\ i = j ) -> ( i + 1 ) = ( j + 1 ) ) | 
						
							| 131 | 128 130 | impbida |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> ( ( i + 1 ) = ( j + 1 ) <-> i = j ) ) | 
						
							| 132 | 121 131 | bitrd |  |-  ( ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) /\ -. j < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) | 
						
							| 133 | 118 132 | pm2.61dan |  |-  ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> ( ( i + 1 ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) | 
						
							| 134 | 92 133 | bitrd |  |-  ( ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) /\ -. i < I ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) | 
						
							| 135 | 89 134 | pm2.61dan |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) <-> i = j ) ) | 
						
							| 136 | 135 | ifbid |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) , ( 1r ` R ) , ( 0g ` R ) ) = if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) | 
						
							| 137 |  | eqid |  |-  ( ( 1 ... ( N - 1 ) ) Mat R ) = ( ( 1 ... ( N - 1 ) ) Mat R ) | 
						
							| 138 |  | fzfid |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( 1 ... ( N - 1 ) ) e. Fin ) | 
						
							| 139 |  | eqid |  |-  ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) = ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) | 
						
							| 140 | 137 26 27 138 29 19 21 139 | mat1ov |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) = if ( i = j , ( 1r ` R ) , ( 0g ` R ) ) ) | 
						
							| 141 | 136 140 | eqtr4d |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> if ( if ( i < I , i , ( i + 1 ) ) = if ( j < I , j , ( j + 1 ) ) , ( 1r ` R ) , ( 0g ` R ) ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) | 
						
							| 142 | 25 51 141 | 3eqtrd |  |-  ( ( ph /\ ( i e. ( 1 ... ( N - 1 ) ) /\ j e. ( 1 ... ( N - 1 ) ) ) ) -> ( i ( I ( subMat1 ` .1. ) I ) j ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) | 
						
							| 143 | 142 | ralrimivva |  |-  ( ph -> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` .1. ) I ) j ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) | 
						
							| 144 | 5 3 3 4 4 16 | smatrcl |  |-  ( ph -> ( I ( subMat1 ` .1. ) I ) e. ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) | 
						
							| 145 |  | elmapfn |  |-  ( ( I ( subMat1 ` .1. ) I ) e. ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) -> ( I ( subMat1 ` .1. ) I ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 146 | 144 145 | syl |  |-  ( ph -> ( I ( subMat1 ` .1. ) I ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 147 |  | fzfi |  |-  ( 1 ... ( N - 1 ) ) e. Fin | 
						
							| 148 |  | eqid |  |-  ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) | 
						
							| 149 | 137 148 139 | mat1bas |  |-  ( ( R e. Ring /\ ( 1 ... ( N - 1 ) ) e. Fin ) -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) | 
						
							| 150 | 2 147 149 | sylancl |  |-  ( ph -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) | 
						
							| 151 | 137 13 | matbas2 |  |-  ( ( ( 1 ... ( N - 1 ) ) e. Fin /\ R e. Ring ) -> ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) | 
						
							| 152 | 147 2 151 | sylancr |  |-  ( ph -> ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) | 
						
							| 153 | 150 152 | eleqtrrd |  |-  ( ph -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) e. ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) | 
						
							| 154 |  | elmapfn |  |-  ( ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) e. ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 155 | 153 154 | syl |  |-  ( ph -> ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 156 |  | eqfnov2 |  |-  ( ( ( I ( subMat1 ` .1. ) I ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) /\ ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) Fn ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) -> ( ( I ( subMat1 ` .1. ) I ) = ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) <-> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` .1. ) I ) j ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) ) | 
						
							| 157 | 146 155 156 | syl2anc |  |-  ( ph -> ( ( I ( subMat1 ` .1. ) I ) = ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) <-> A. i e. ( 1 ... ( N - 1 ) ) A. j e. ( 1 ... ( N - 1 ) ) ( i ( I ( subMat1 ` .1. ) I ) j ) = ( i ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) j ) ) ) | 
						
							| 158 | 143 157 | mpbird |  |-  ( ph -> ( I ( subMat1 ` .1. ) I ) = ( 1r ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |