| Step |
Hyp |
Ref |
Expression |
| 1 |
|
smat.s |
|- S = ( K ( subMat1 ` A ) L ) |
| 2 |
|
smat.m |
|- ( ph -> M e. NN ) |
| 3 |
|
smat.n |
|- ( ph -> N e. NN ) |
| 4 |
|
smat.k |
|- ( ph -> K e. ( 1 ... M ) ) |
| 5 |
|
smat.l |
|- ( ph -> L e. ( 1 ... N ) ) |
| 6 |
|
smat.a |
|- ( ph -> A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) |
| 7 |
|
elmapi |
|- ( A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) -> A : ( ( 1 ... M ) X. ( 1 ... N ) ) --> B ) |
| 8 |
|
ffun |
|- ( A : ( ( 1 ... M ) X. ( 1 ... N ) ) --> B -> Fun A ) |
| 9 |
6 7 8
|
3syl |
|- ( ph -> Fun A ) |
| 10 |
|
eqid |
|- ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) = ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) |
| 11 |
10
|
mpofun |
|- Fun ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) |
| 12 |
11
|
a1i |
|- ( ph -> Fun ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) |
| 13 |
|
funco |
|- ( ( Fun A /\ Fun ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) -> Fun ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) |
| 14 |
9 12 13
|
syl2anc |
|- ( ph -> Fun ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) |
| 15 |
|
fz1ssnn |
|- ( 1 ... M ) C_ NN |
| 16 |
15 4
|
sselid |
|- ( ph -> K e. NN ) |
| 17 |
|
fz1ssnn |
|- ( 1 ... N ) C_ NN |
| 18 |
17 5
|
sselid |
|- ( ph -> L e. NN ) |
| 19 |
|
smatfval |
|- ( ( K e. NN /\ L e. NN /\ A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) -> ( K ( subMat1 ` A ) L ) = ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) |
| 20 |
16 18 6 19
|
syl3anc |
|- ( ph -> ( K ( subMat1 ` A ) L ) = ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) |
| 21 |
1 20
|
eqtrid |
|- ( ph -> S = ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) |
| 22 |
21
|
funeqd |
|- ( ph -> ( Fun S <-> Fun ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) ) |
| 23 |
14 22
|
mpbird |
|- ( ph -> Fun S ) |
| 24 |
|
fdmrn |
|- ( Fun S <-> S : dom S --> ran S ) |
| 25 |
23 24
|
sylib |
|- ( ph -> S : dom S --> ran S ) |
| 26 |
21
|
dmeqd |
|- ( ph -> dom S = dom ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) |
| 27 |
|
dmco |
|- dom ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) = ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " dom A ) |
| 28 |
|
fdm |
|- ( A : ( ( 1 ... M ) X. ( 1 ... N ) ) --> B -> dom A = ( ( 1 ... M ) X. ( 1 ... N ) ) ) |
| 29 |
6 7 28
|
3syl |
|- ( ph -> dom A = ( ( 1 ... M ) X. ( 1 ... N ) ) ) |
| 30 |
29
|
imaeq2d |
|- ( ph -> ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " dom A ) = ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) |
| 31 |
30
|
eleq2d |
|- ( ph -> ( x e. ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " dom A ) <-> x e. ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) ) |
| 32 |
|
opex |
|- <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. e. _V |
| 33 |
10 32
|
fnmpoi |
|- ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) Fn ( NN X. NN ) |
| 34 |
|
elpreima |
|- ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) Fn ( NN X. NN ) -> ( x e. ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( x e. ( NN X. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) ) |
| 35 |
33 34
|
ax-mp |
|- ( x e. ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( x e. ( NN X. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) |
| 36 |
35
|
a1i |
|- ( ph -> ( x e. ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( x e. ( NN X. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) ) |
| 37 |
|
simplr |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 38 |
37
|
fveq2d |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) = ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) |
| 39 |
|
df-ov |
|- ( ( 1st ` x ) ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ( 2nd ` x ) ) = ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 40 |
38 39
|
eqtr4di |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) = ( ( 1st ` x ) ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ( 2nd ` x ) ) ) |
| 41 |
|
breq1 |
|- ( i = ( 1st ` x ) -> ( i < K <-> ( 1st ` x ) < K ) ) |
| 42 |
|
id |
|- ( i = ( 1st ` x ) -> i = ( 1st ` x ) ) |
| 43 |
|
oveq1 |
|- ( i = ( 1st ` x ) -> ( i + 1 ) = ( ( 1st ` x ) + 1 ) ) |
| 44 |
41 42 43
|
ifbieq12d |
|- ( i = ( 1st ` x ) -> if ( i < K , i , ( i + 1 ) ) = if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) ) |
| 45 |
44
|
opeq1d |
|- ( i = ( 1st ` x ) -> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. = <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) |
| 46 |
|
breq1 |
|- ( j = ( 2nd ` x ) -> ( j < L <-> ( 2nd ` x ) < L ) ) |
| 47 |
|
id |
|- ( j = ( 2nd ` x ) -> j = ( 2nd ` x ) ) |
| 48 |
|
oveq1 |
|- ( j = ( 2nd ` x ) -> ( j + 1 ) = ( ( 2nd ` x ) + 1 ) ) |
| 49 |
46 47 48
|
ifbieq12d |
|- ( j = ( 2nd ` x ) -> if ( j < L , j , ( j + 1 ) ) = if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) ) |
| 50 |
49
|
opeq2d |
|- ( j = ( 2nd ` x ) -> <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. = <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) >. ) |
| 51 |
|
opex |
|- <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) >. e. _V |
| 52 |
45 50 10 51
|
ovmpo |
|- ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) -> ( ( 1st ` x ) ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ( 2nd ` x ) ) = <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) >. ) |
| 53 |
52
|
adantl |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( 1st ` x ) ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ( 2nd ` x ) ) = <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) >. ) |
| 54 |
40 53
|
eqtrd |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) = <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) >. ) |
| 55 |
54
|
eleq1d |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) <-> <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) >. e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) |
| 56 |
|
opelxp |
|- ( <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) >. e. ( ( 1 ... M ) X. ( 1 ... N ) ) <-> ( if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) e. ( 1 ... M ) /\ if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) e. ( 1 ... N ) ) ) |
| 57 |
55 56
|
bitrdi |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) <-> ( if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) e. ( 1 ... M ) /\ if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) e. ( 1 ... N ) ) ) ) |
| 58 |
|
ifel |
|- ( if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) e. ( 1 ... M ) <-> ( ( ( 1st ` x ) < K /\ ( 1st ` x ) e. ( 1 ... M ) ) \/ ( -. ( 1st ` x ) < K /\ ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) ) ) ) |
| 59 |
|
simplrl |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) e. NN ) |
| 60 |
59
|
nnred |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) e. RR ) |
| 61 |
16
|
nnred |
|- ( ph -> K e. RR ) |
| 62 |
61
|
ad3antrrr |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> K e. RR ) |
| 63 |
2
|
nnred |
|- ( ph -> M e. RR ) |
| 64 |
63
|
ad3antrrr |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> M e. RR ) |
| 65 |
|
simpr |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) < K ) |
| 66 |
60 62 65
|
ltled |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) <_ K ) |
| 67 |
|
elfzle2 |
|- ( K e. ( 1 ... M ) -> K <_ M ) |
| 68 |
4 67
|
syl |
|- ( ph -> K <_ M ) |
| 69 |
68
|
ad3antrrr |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> K <_ M ) |
| 70 |
60 62 64 66 69
|
letrd |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) <_ M ) |
| 71 |
59 70
|
jca |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ M ) ) |
| 72 |
2
|
nnzd |
|- ( ph -> M e. ZZ ) |
| 73 |
|
fznn |
|- ( M e. ZZ -> ( ( 1st ` x ) e. ( 1 ... M ) <-> ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ M ) ) ) |
| 74 |
72 73
|
syl |
|- ( ph -> ( ( 1st ` x ) e. ( 1 ... M ) <-> ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ M ) ) ) |
| 75 |
74
|
ad3antrrr |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( ( 1st ` x ) e. ( 1 ... M ) <-> ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ M ) ) ) |
| 76 |
71 75
|
mpbird |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) e. ( 1 ... M ) ) |
| 77 |
60 62 64 65 69
|
ltletrd |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) < M ) |
| 78 |
2
|
ad3antrrr |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> M e. NN ) |
| 79 |
|
nnltlem1 |
|- ( ( ( 1st ` x ) e. NN /\ M e. NN ) -> ( ( 1st ` x ) < M <-> ( 1st ` x ) <_ ( M - 1 ) ) ) |
| 80 |
59 78 79
|
syl2anc |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( ( 1st ` x ) < M <-> ( 1st ` x ) <_ ( M - 1 ) ) ) |
| 81 |
77 80
|
mpbid |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) <_ ( M - 1 ) ) |
| 82 |
76 81
|
2thd |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( ( 1st ` x ) e. ( 1 ... M ) <-> ( 1st ` x ) <_ ( M - 1 ) ) ) |
| 83 |
82
|
pm5.32da |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 1st ` x ) < K /\ ( 1st ` x ) e. ( 1 ... M ) ) <-> ( ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) ) ) |
| 84 |
|
fznn |
|- ( M e. ZZ -> ( ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) <-> ( ( ( 1st ` x ) + 1 ) e. NN /\ ( ( 1st ` x ) + 1 ) <_ M ) ) ) |
| 85 |
72 84
|
syl |
|- ( ph -> ( ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) <-> ( ( ( 1st ` x ) + 1 ) e. NN /\ ( ( 1st ` x ) + 1 ) <_ M ) ) ) |
| 86 |
85
|
ad2antrr |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) <-> ( ( ( 1st ` x ) + 1 ) e. NN /\ ( ( 1st ` x ) + 1 ) <_ M ) ) ) |
| 87 |
|
simprl |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( 1st ` x ) e. NN ) |
| 88 |
87
|
peano2nnd |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( 1st ` x ) + 1 ) e. NN ) |
| 89 |
88
|
biantrurd |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 1st ` x ) + 1 ) <_ M <-> ( ( ( 1st ` x ) + 1 ) e. NN /\ ( ( 1st ` x ) + 1 ) <_ M ) ) ) |
| 90 |
87
|
nnzd |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( 1st ` x ) e. ZZ ) |
| 91 |
72
|
ad2antrr |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> M e. ZZ ) |
| 92 |
|
zltp1le |
|- ( ( ( 1st ` x ) e. ZZ /\ M e. ZZ ) -> ( ( 1st ` x ) < M <-> ( ( 1st ` x ) + 1 ) <_ M ) ) |
| 93 |
|
zltlem1 |
|- ( ( ( 1st ` x ) e. ZZ /\ M e. ZZ ) -> ( ( 1st ` x ) < M <-> ( 1st ` x ) <_ ( M - 1 ) ) ) |
| 94 |
92 93
|
bitr3d |
|- ( ( ( 1st ` x ) e. ZZ /\ M e. ZZ ) -> ( ( ( 1st ` x ) + 1 ) <_ M <-> ( 1st ` x ) <_ ( M - 1 ) ) ) |
| 95 |
90 91 94
|
syl2anc |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 1st ` x ) + 1 ) <_ M <-> ( 1st ` x ) <_ ( M - 1 ) ) ) |
| 96 |
86 89 95
|
3bitr2d |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) <-> ( 1st ` x ) <_ ( M - 1 ) ) ) |
| 97 |
96
|
anbi2d |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( -. ( 1st ` x ) < K /\ ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) ) <-> ( -. ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) ) ) |
| 98 |
83 97
|
orbi12d |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( ( 1st ` x ) < K /\ ( 1st ` x ) e. ( 1 ... M ) ) \/ ( -. ( 1st ` x ) < K /\ ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) ) ) <-> ( ( ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) \/ ( -. ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) ) ) ) |
| 99 |
|
pm4.42 |
|- ( ( 1st ` x ) <_ ( M - 1 ) <-> ( ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 1st ` x ) < K ) \/ ( ( 1st ` x ) <_ ( M - 1 ) /\ -. ( 1st ` x ) < K ) ) ) |
| 100 |
|
ancom |
|- ( ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 1st ` x ) < K ) <-> ( ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) ) |
| 101 |
|
ancom |
|- ( ( ( 1st ` x ) <_ ( M - 1 ) /\ -. ( 1st ` x ) < K ) <-> ( -. ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) ) |
| 102 |
100 101
|
orbi12i |
|- ( ( ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 1st ` x ) < K ) \/ ( ( 1st ` x ) <_ ( M - 1 ) /\ -. ( 1st ` x ) < K ) ) <-> ( ( ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) \/ ( -. ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) ) ) |
| 103 |
99 102
|
bitri |
|- ( ( 1st ` x ) <_ ( M - 1 ) <-> ( ( ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) \/ ( -. ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) ) ) |
| 104 |
98 103
|
bitr4di |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( ( 1st ` x ) < K /\ ( 1st ` x ) e. ( 1 ... M ) ) \/ ( -. ( 1st ` x ) < K /\ ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) ) ) <-> ( 1st ` x ) <_ ( M - 1 ) ) ) |
| 105 |
58 104
|
bitrid |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) e. ( 1 ... M ) <-> ( 1st ` x ) <_ ( M - 1 ) ) ) |
| 106 |
|
ifel |
|- ( if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) e. ( 1 ... N ) <-> ( ( ( 2nd ` x ) < L /\ ( 2nd ` x ) e. ( 1 ... N ) ) \/ ( -. ( 2nd ` x ) < L /\ ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) ) ) ) |
| 107 |
|
simplrr |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) e. NN ) |
| 108 |
107
|
nnred |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) e. RR ) |
| 109 |
18
|
nnred |
|- ( ph -> L e. RR ) |
| 110 |
109
|
ad3antrrr |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> L e. RR ) |
| 111 |
3
|
nnred |
|- ( ph -> N e. RR ) |
| 112 |
111
|
ad3antrrr |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> N e. RR ) |
| 113 |
|
simpr |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) < L ) |
| 114 |
108 110 113
|
ltled |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) <_ L ) |
| 115 |
|
elfzle2 |
|- ( L e. ( 1 ... N ) -> L <_ N ) |
| 116 |
5 115
|
syl |
|- ( ph -> L <_ N ) |
| 117 |
116
|
ad3antrrr |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> L <_ N ) |
| 118 |
108 110 112 114 117
|
letrd |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) <_ N ) |
| 119 |
107 118
|
jca |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ N ) ) |
| 120 |
3
|
nnzd |
|- ( ph -> N e. ZZ ) |
| 121 |
|
fznn |
|- ( N e. ZZ -> ( ( 2nd ` x ) e. ( 1 ... N ) <-> ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ N ) ) ) |
| 122 |
120 121
|
syl |
|- ( ph -> ( ( 2nd ` x ) e. ( 1 ... N ) <-> ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ N ) ) ) |
| 123 |
122
|
ad3antrrr |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( ( 2nd ` x ) e. ( 1 ... N ) <-> ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ N ) ) ) |
| 124 |
119 123
|
mpbird |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) e. ( 1 ... N ) ) |
| 125 |
108 110 112 113 117
|
ltletrd |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) < N ) |
| 126 |
3
|
ad3antrrr |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> N e. NN ) |
| 127 |
|
nnltlem1 |
|- ( ( ( 2nd ` x ) e. NN /\ N e. NN ) -> ( ( 2nd ` x ) < N <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) |
| 128 |
107 126 127
|
syl2anc |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( ( 2nd ` x ) < N <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) |
| 129 |
125 128
|
mpbid |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) <_ ( N - 1 ) ) |
| 130 |
124 129
|
2thd |
|- ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( ( 2nd ` x ) e. ( 1 ... N ) <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) |
| 131 |
130
|
pm5.32da |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 2nd ` x ) < L /\ ( 2nd ` x ) e. ( 1 ... N ) ) <-> ( ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) |
| 132 |
|
fznn |
|- ( N e. ZZ -> ( ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) <-> ( ( ( 2nd ` x ) + 1 ) e. NN /\ ( ( 2nd ` x ) + 1 ) <_ N ) ) ) |
| 133 |
120 132
|
syl |
|- ( ph -> ( ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) <-> ( ( ( 2nd ` x ) + 1 ) e. NN /\ ( ( 2nd ` x ) + 1 ) <_ N ) ) ) |
| 134 |
133
|
ad2antrr |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) <-> ( ( ( 2nd ` x ) + 1 ) e. NN /\ ( ( 2nd ` x ) + 1 ) <_ N ) ) ) |
| 135 |
|
simprr |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( 2nd ` x ) e. NN ) |
| 136 |
135
|
peano2nnd |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( 2nd ` x ) + 1 ) e. NN ) |
| 137 |
136
|
biantrurd |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 2nd ` x ) + 1 ) <_ N <-> ( ( ( 2nd ` x ) + 1 ) e. NN /\ ( ( 2nd ` x ) + 1 ) <_ N ) ) ) |
| 138 |
135
|
nnzd |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( 2nd ` x ) e. ZZ ) |
| 139 |
120
|
ad2antrr |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> N e. ZZ ) |
| 140 |
|
zltp1le |
|- ( ( ( 2nd ` x ) e. ZZ /\ N e. ZZ ) -> ( ( 2nd ` x ) < N <-> ( ( 2nd ` x ) + 1 ) <_ N ) ) |
| 141 |
|
zltlem1 |
|- ( ( ( 2nd ` x ) e. ZZ /\ N e. ZZ ) -> ( ( 2nd ` x ) < N <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) |
| 142 |
140 141
|
bitr3d |
|- ( ( ( 2nd ` x ) e. ZZ /\ N e. ZZ ) -> ( ( ( 2nd ` x ) + 1 ) <_ N <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) |
| 143 |
138 139 142
|
syl2anc |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 2nd ` x ) + 1 ) <_ N <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) |
| 144 |
134 137 143
|
3bitr2d |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) |
| 145 |
144
|
anbi2d |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( -. ( 2nd ` x ) < L /\ ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) ) <-> ( -. ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) |
| 146 |
131 145
|
orbi12d |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( ( 2nd ` x ) < L /\ ( 2nd ` x ) e. ( 1 ... N ) ) \/ ( -. ( 2nd ` x ) < L /\ ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) ) ) <-> ( ( ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) \/ ( -. ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) ) |
| 147 |
|
pm4.42 |
|- ( ( 2nd ` x ) <_ ( N - 1 ) <-> ( ( ( 2nd ` x ) <_ ( N - 1 ) /\ ( 2nd ` x ) < L ) \/ ( ( 2nd ` x ) <_ ( N - 1 ) /\ -. ( 2nd ` x ) < L ) ) ) |
| 148 |
|
ancom |
|- ( ( ( 2nd ` x ) <_ ( N - 1 ) /\ ( 2nd ` x ) < L ) <-> ( ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) |
| 149 |
|
ancom |
|- ( ( ( 2nd ` x ) <_ ( N - 1 ) /\ -. ( 2nd ` x ) < L ) <-> ( -. ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) |
| 150 |
148 149
|
orbi12i |
|- ( ( ( ( 2nd ` x ) <_ ( N - 1 ) /\ ( 2nd ` x ) < L ) \/ ( ( 2nd ` x ) <_ ( N - 1 ) /\ -. ( 2nd ` x ) < L ) ) <-> ( ( ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) \/ ( -. ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) |
| 151 |
147 150
|
bitri |
|- ( ( 2nd ` x ) <_ ( N - 1 ) <-> ( ( ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) \/ ( -. ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) |
| 152 |
146 151
|
bitr4di |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( ( 2nd ` x ) < L /\ ( 2nd ` x ) e. ( 1 ... N ) ) \/ ( -. ( 2nd ` x ) < L /\ ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) ) ) <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) |
| 153 |
106 152
|
bitrid |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) e. ( 1 ... N ) <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) |
| 154 |
105 153
|
anbi12d |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) e. ( 1 ... M ) /\ if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) e. ( 1 ... N ) ) <-> ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) |
| 155 |
57 154
|
bitrd |
|- ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) <-> ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) |
| 156 |
155
|
pm5.32da |
|- ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) -> ( ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) ) |
| 157 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 158 |
72 157
|
zsubcld |
|- ( ph -> ( M - 1 ) e. ZZ ) |
| 159 |
|
fznn |
|- ( ( M - 1 ) e. ZZ -> ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) <-> ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ ( M - 1 ) ) ) ) |
| 160 |
158 159
|
syl |
|- ( ph -> ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) <-> ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ ( M - 1 ) ) ) ) |
| 161 |
120 157
|
zsubcld |
|- ( ph -> ( N - 1 ) e. ZZ ) |
| 162 |
|
fznn |
|- ( ( N - 1 ) e. ZZ -> ( ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) <-> ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) |
| 163 |
161 162
|
syl |
|- ( ph -> ( ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) <-> ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) |
| 164 |
160 163
|
anbi12d |
|- ( ph -> ( ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) /\ ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) ) <-> ( ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ ( M - 1 ) ) /\ ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) ) |
| 165 |
|
an4 |
|- ( ( ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ ( M - 1 ) ) /\ ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) <-> ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) |
| 166 |
164 165
|
bitrdi |
|- ( ph -> ( ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) /\ ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) ) <-> ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) ) |
| 167 |
166
|
adantr |
|- ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) -> ( ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) /\ ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) ) <-> ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) ) |
| 168 |
156 167
|
bitr4d |
|- ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) -> ( ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) /\ ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) ) ) ) |
| 169 |
168
|
pm5.32da |
|- ( ph -> ( ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) <-> ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) /\ ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) ) ) ) ) |
| 170 |
|
elxp6 |
|- ( x e. ( NN X. NN ) <-> ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) ) |
| 171 |
170
|
anbi1i |
|- ( ( x e. ( NN X. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) |
| 172 |
|
anass |
|- ( ( ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) ) |
| 173 |
171 172
|
bitri |
|- ( ( x e. ( NN X. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) ) |
| 174 |
|
elxp6 |
|- ( x e. ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) <-> ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) /\ ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) ) ) ) |
| 175 |
169 173 174
|
3bitr4g |
|- ( ph -> ( ( x e. ( NN X. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> x e. ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |
| 176 |
31 36 175
|
3bitrd |
|- ( ph -> ( x e. ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " dom A ) <-> x e. ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |
| 177 |
176
|
eqrdv |
|- ( ph -> ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " dom A ) = ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) |
| 178 |
27 177
|
eqtrid |
|- ( ph -> dom ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) = ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) |
| 179 |
26 178
|
eqtrd |
|- ( ph -> dom S = ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) |
| 180 |
179
|
feq2d |
|- ( ph -> ( S : dom S --> ran S <-> S : ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) --> ran S ) ) |
| 181 |
25 180
|
mpbid |
|- ( ph -> S : ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) --> ran S ) |
| 182 |
21
|
rneqd |
|- ( ph -> ran S = ran ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) |
| 183 |
|
rncoss |
|- ran ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) C_ ran A |
| 184 |
182 183
|
eqsstrdi |
|- ( ph -> ran S C_ ran A ) |
| 185 |
|
frn |
|- ( A : ( ( 1 ... M ) X. ( 1 ... N ) ) --> B -> ran A C_ B ) |
| 186 |
6 7 185
|
3syl |
|- ( ph -> ran A C_ B ) |
| 187 |
184 186
|
sstrd |
|- ( ph -> ran S C_ B ) |
| 188 |
|
fss |
|- ( ( S : ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) --> ran S /\ ran S C_ B ) -> S : ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) --> B ) |
| 189 |
181 187 188
|
syl2anc |
|- ( ph -> S : ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) --> B ) |
| 190 |
|
reldmmap |
|- Rel dom ^m |
| 191 |
190
|
ovrcl |
|- ( A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) -> ( B e. _V /\ ( ( 1 ... M ) X. ( 1 ... N ) ) e. _V ) ) |
| 192 |
6 191
|
syl |
|- ( ph -> ( B e. _V /\ ( ( 1 ... M ) X. ( 1 ... N ) ) e. _V ) ) |
| 193 |
192
|
simpld |
|- ( ph -> B e. _V ) |
| 194 |
|
ovex |
|- ( 1 ... ( M - 1 ) ) e. _V |
| 195 |
|
ovex |
|- ( 1 ... ( N - 1 ) ) e. _V |
| 196 |
194 195
|
xpex |
|- ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) e. _V |
| 197 |
|
elmapg |
|- ( ( B e. _V /\ ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) e. _V ) -> ( S e. ( B ^m ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) <-> S : ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) --> B ) ) |
| 198 |
193 196 197
|
sylancl |
|- ( ph -> ( S e. ( B ^m ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) <-> S : ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) --> B ) ) |
| 199 |
189 198
|
mpbird |
|- ( ph -> S e. ( B ^m ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |