| Step | Hyp | Ref | Expression | 
						
							| 1 |  | smat.s |  |-  S = ( K ( subMat1 ` A ) L ) | 
						
							| 2 |  | smat.m |  |-  ( ph -> M e. NN ) | 
						
							| 3 |  | smat.n |  |-  ( ph -> N e. NN ) | 
						
							| 4 |  | smat.k |  |-  ( ph -> K e. ( 1 ... M ) ) | 
						
							| 5 |  | smat.l |  |-  ( ph -> L e. ( 1 ... N ) ) | 
						
							| 6 |  | smat.a |  |-  ( ph -> A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) | 
						
							| 7 |  | elmapi |  |-  ( A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) -> A : ( ( 1 ... M ) X. ( 1 ... N ) ) --> B ) | 
						
							| 8 |  | ffun |  |-  ( A : ( ( 1 ... M ) X. ( 1 ... N ) ) --> B -> Fun A ) | 
						
							| 9 | 6 7 8 | 3syl |  |-  ( ph -> Fun A ) | 
						
							| 10 |  | eqid |  |-  ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) = ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) | 
						
							| 11 | 10 | mpofun |  |-  Fun ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) | 
						
							| 12 | 11 | a1i |  |-  ( ph -> Fun ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) | 
						
							| 13 |  | funco |  |-  ( ( Fun A /\ Fun ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) -> Fun ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) | 
						
							| 14 | 9 12 13 | syl2anc |  |-  ( ph -> Fun ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) | 
						
							| 15 |  | fz1ssnn |  |-  ( 1 ... M ) C_ NN | 
						
							| 16 | 15 4 | sselid |  |-  ( ph -> K e. NN ) | 
						
							| 17 |  | fz1ssnn |  |-  ( 1 ... N ) C_ NN | 
						
							| 18 | 17 5 | sselid |  |-  ( ph -> L e. NN ) | 
						
							| 19 |  | smatfval |  |-  ( ( K e. NN /\ L e. NN /\ A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) -> ( K ( subMat1 ` A ) L ) = ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) | 
						
							| 20 | 16 18 6 19 | syl3anc |  |-  ( ph -> ( K ( subMat1 ` A ) L ) = ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) | 
						
							| 21 | 1 20 | eqtrid |  |-  ( ph -> S = ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) | 
						
							| 22 | 21 | funeqd |  |-  ( ph -> ( Fun S <-> Fun ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) ) | 
						
							| 23 | 14 22 | mpbird |  |-  ( ph -> Fun S ) | 
						
							| 24 |  | fdmrn |  |-  ( Fun S <-> S : dom S --> ran S ) | 
						
							| 25 | 23 24 | sylib |  |-  ( ph -> S : dom S --> ran S ) | 
						
							| 26 | 21 | dmeqd |  |-  ( ph -> dom S = dom ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) | 
						
							| 27 |  | dmco |  |-  dom ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) = ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " dom A ) | 
						
							| 28 |  | fdm |  |-  ( A : ( ( 1 ... M ) X. ( 1 ... N ) ) --> B -> dom A = ( ( 1 ... M ) X. ( 1 ... N ) ) ) | 
						
							| 29 | 6 7 28 | 3syl |  |-  ( ph -> dom A = ( ( 1 ... M ) X. ( 1 ... N ) ) ) | 
						
							| 30 | 29 | imaeq2d |  |-  ( ph -> ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " dom A ) = ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) | 
						
							| 31 | 30 | eleq2d |  |-  ( ph -> ( x e. ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " dom A ) <-> x e. ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) ) | 
						
							| 32 |  | opex |  |-  <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. e. _V | 
						
							| 33 | 10 32 | fnmpoi |  |-  ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) Fn ( NN X. NN ) | 
						
							| 34 |  | elpreima |  |-  ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) Fn ( NN X. NN ) -> ( x e. ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( x e. ( NN X. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) ) | 
						
							| 35 | 33 34 | ax-mp |  |-  ( x e. ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( x e. ( NN X. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) | 
						
							| 36 | 35 | a1i |  |-  ( ph -> ( x e. ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( x e. ( NN X. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) ) | 
						
							| 37 |  | simplr |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) | 
						
							| 38 | 37 | fveq2d |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) = ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) ) | 
						
							| 39 |  | df-ov |  |-  ( ( 1st ` x ) ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ( 2nd ` x ) ) = ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` <. ( 1st ` x ) , ( 2nd ` x ) >. ) | 
						
							| 40 | 38 39 | eqtr4di |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) = ( ( 1st ` x ) ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ( 2nd ` x ) ) ) | 
						
							| 41 |  | breq1 |  |-  ( i = ( 1st ` x ) -> ( i < K <-> ( 1st ` x ) < K ) ) | 
						
							| 42 |  | id |  |-  ( i = ( 1st ` x ) -> i = ( 1st ` x ) ) | 
						
							| 43 |  | oveq1 |  |-  ( i = ( 1st ` x ) -> ( i + 1 ) = ( ( 1st ` x ) + 1 ) ) | 
						
							| 44 | 41 42 43 | ifbieq12d |  |-  ( i = ( 1st ` x ) -> if ( i < K , i , ( i + 1 ) ) = if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) ) | 
						
							| 45 | 44 | opeq1d |  |-  ( i = ( 1st ` x ) -> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. = <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) | 
						
							| 46 |  | breq1 |  |-  ( j = ( 2nd ` x ) -> ( j < L <-> ( 2nd ` x ) < L ) ) | 
						
							| 47 |  | id |  |-  ( j = ( 2nd ` x ) -> j = ( 2nd ` x ) ) | 
						
							| 48 |  | oveq1 |  |-  ( j = ( 2nd ` x ) -> ( j + 1 ) = ( ( 2nd ` x ) + 1 ) ) | 
						
							| 49 | 46 47 48 | ifbieq12d |  |-  ( j = ( 2nd ` x ) -> if ( j < L , j , ( j + 1 ) ) = if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) ) | 
						
							| 50 | 49 | opeq2d |  |-  ( j = ( 2nd ` x ) -> <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. = <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) >. ) | 
						
							| 51 |  | opex |  |-  <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) >. e. _V | 
						
							| 52 | 45 50 10 51 | ovmpo |  |-  ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) -> ( ( 1st ` x ) ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ( 2nd ` x ) ) = <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) >. ) | 
						
							| 53 | 52 | adantl |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( 1st ` x ) ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ( 2nd ` x ) ) = <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) >. ) | 
						
							| 54 | 40 53 | eqtrd |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) = <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) >. ) | 
						
							| 55 | 54 | eleq1d |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) <-> <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) >. e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) | 
						
							| 56 |  | opelxp |  |-  ( <. if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) , if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) >. e. ( ( 1 ... M ) X. ( 1 ... N ) ) <-> ( if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) e. ( 1 ... M ) /\ if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) e. ( 1 ... N ) ) ) | 
						
							| 57 | 55 56 | bitrdi |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) <-> ( if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) e. ( 1 ... M ) /\ if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) e. ( 1 ... N ) ) ) ) | 
						
							| 58 |  | ifel |  |-  ( if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) e. ( 1 ... M ) <-> ( ( ( 1st ` x ) < K /\ ( 1st ` x ) e. ( 1 ... M ) ) \/ ( -. ( 1st ` x ) < K /\ ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) ) ) ) | 
						
							| 59 |  | simplrl |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) e. NN ) | 
						
							| 60 | 59 | nnred |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) e. RR ) | 
						
							| 61 | 16 | nnred |  |-  ( ph -> K e. RR ) | 
						
							| 62 | 61 | ad3antrrr |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> K e. RR ) | 
						
							| 63 | 2 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 64 | 63 | ad3antrrr |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> M e. RR ) | 
						
							| 65 |  | simpr |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) < K ) | 
						
							| 66 | 60 62 65 | ltled |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) <_ K ) | 
						
							| 67 |  | elfzle2 |  |-  ( K e. ( 1 ... M ) -> K <_ M ) | 
						
							| 68 | 4 67 | syl |  |-  ( ph -> K <_ M ) | 
						
							| 69 | 68 | ad3antrrr |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> K <_ M ) | 
						
							| 70 | 60 62 64 66 69 | letrd |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) <_ M ) | 
						
							| 71 | 59 70 | jca |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ M ) ) | 
						
							| 72 | 2 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 73 |  | fznn |  |-  ( M e. ZZ -> ( ( 1st ` x ) e. ( 1 ... M ) <-> ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ M ) ) ) | 
						
							| 74 | 72 73 | syl |  |-  ( ph -> ( ( 1st ` x ) e. ( 1 ... M ) <-> ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ M ) ) ) | 
						
							| 75 | 74 | ad3antrrr |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( ( 1st ` x ) e. ( 1 ... M ) <-> ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ M ) ) ) | 
						
							| 76 | 71 75 | mpbird |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) e. ( 1 ... M ) ) | 
						
							| 77 | 60 62 64 65 69 | ltletrd |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) < M ) | 
						
							| 78 | 2 | ad3antrrr |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> M e. NN ) | 
						
							| 79 |  | nnltlem1 |  |-  ( ( ( 1st ` x ) e. NN /\ M e. NN ) -> ( ( 1st ` x ) < M <-> ( 1st ` x ) <_ ( M - 1 ) ) ) | 
						
							| 80 | 59 78 79 | syl2anc |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( ( 1st ` x ) < M <-> ( 1st ` x ) <_ ( M - 1 ) ) ) | 
						
							| 81 | 77 80 | mpbid |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( 1st ` x ) <_ ( M - 1 ) ) | 
						
							| 82 | 76 81 | 2thd |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 1st ` x ) < K ) -> ( ( 1st ` x ) e. ( 1 ... M ) <-> ( 1st ` x ) <_ ( M - 1 ) ) ) | 
						
							| 83 | 82 | pm5.32da |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 1st ` x ) < K /\ ( 1st ` x ) e. ( 1 ... M ) ) <-> ( ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) ) ) | 
						
							| 84 |  | fznn |  |-  ( M e. ZZ -> ( ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) <-> ( ( ( 1st ` x ) + 1 ) e. NN /\ ( ( 1st ` x ) + 1 ) <_ M ) ) ) | 
						
							| 85 | 72 84 | syl |  |-  ( ph -> ( ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) <-> ( ( ( 1st ` x ) + 1 ) e. NN /\ ( ( 1st ` x ) + 1 ) <_ M ) ) ) | 
						
							| 86 | 85 | ad2antrr |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) <-> ( ( ( 1st ` x ) + 1 ) e. NN /\ ( ( 1st ` x ) + 1 ) <_ M ) ) ) | 
						
							| 87 |  | simprl |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( 1st ` x ) e. NN ) | 
						
							| 88 | 87 | peano2nnd |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( 1st ` x ) + 1 ) e. NN ) | 
						
							| 89 | 88 | biantrurd |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 1st ` x ) + 1 ) <_ M <-> ( ( ( 1st ` x ) + 1 ) e. NN /\ ( ( 1st ` x ) + 1 ) <_ M ) ) ) | 
						
							| 90 | 87 | nnzd |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( 1st ` x ) e. ZZ ) | 
						
							| 91 | 72 | ad2antrr |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> M e. ZZ ) | 
						
							| 92 |  | zltp1le |  |-  ( ( ( 1st ` x ) e. ZZ /\ M e. ZZ ) -> ( ( 1st ` x ) < M <-> ( ( 1st ` x ) + 1 ) <_ M ) ) | 
						
							| 93 |  | zltlem1 |  |-  ( ( ( 1st ` x ) e. ZZ /\ M e. ZZ ) -> ( ( 1st ` x ) < M <-> ( 1st ` x ) <_ ( M - 1 ) ) ) | 
						
							| 94 | 92 93 | bitr3d |  |-  ( ( ( 1st ` x ) e. ZZ /\ M e. ZZ ) -> ( ( ( 1st ` x ) + 1 ) <_ M <-> ( 1st ` x ) <_ ( M - 1 ) ) ) | 
						
							| 95 | 90 91 94 | syl2anc |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 1st ` x ) + 1 ) <_ M <-> ( 1st ` x ) <_ ( M - 1 ) ) ) | 
						
							| 96 | 86 89 95 | 3bitr2d |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) <-> ( 1st ` x ) <_ ( M - 1 ) ) ) | 
						
							| 97 | 96 | anbi2d |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( -. ( 1st ` x ) < K /\ ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) ) <-> ( -. ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) ) ) | 
						
							| 98 | 83 97 | orbi12d |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( ( 1st ` x ) < K /\ ( 1st ` x ) e. ( 1 ... M ) ) \/ ( -. ( 1st ` x ) < K /\ ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) ) ) <-> ( ( ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) \/ ( -. ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) ) ) ) | 
						
							| 99 |  | pm4.42 |  |-  ( ( 1st ` x ) <_ ( M - 1 ) <-> ( ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 1st ` x ) < K ) \/ ( ( 1st ` x ) <_ ( M - 1 ) /\ -. ( 1st ` x ) < K ) ) ) | 
						
							| 100 |  | ancom |  |-  ( ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 1st ` x ) < K ) <-> ( ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) ) | 
						
							| 101 |  | ancom |  |-  ( ( ( 1st ` x ) <_ ( M - 1 ) /\ -. ( 1st ` x ) < K ) <-> ( -. ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) ) | 
						
							| 102 | 100 101 | orbi12i |  |-  ( ( ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 1st ` x ) < K ) \/ ( ( 1st ` x ) <_ ( M - 1 ) /\ -. ( 1st ` x ) < K ) ) <-> ( ( ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) \/ ( -. ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) ) ) | 
						
							| 103 | 99 102 | bitri |  |-  ( ( 1st ` x ) <_ ( M - 1 ) <-> ( ( ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) \/ ( -. ( 1st ` x ) < K /\ ( 1st ` x ) <_ ( M - 1 ) ) ) ) | 
						
							| 104 | 98 103 | bitr4di |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( ( 1st ` x ) < K /\ ( 1st ` x ) e. ( 1 ... M ) ) \/ ( -. ( 1st ` x ) < K /\ ( ( 1st ` x ) + 1 ) e. ( 1 ... M ) ) ) <-> ( 1st ` x ) <_ ( M - 1 ) ) ) | 
						
							| 105 | 58 104 | bitrid |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) e. ( 1 ... M ) <-> ( 1st ` x ) <_ ( M - 1 ) ) ) | 
						
							| 106 |  | ifel |  |-  ( if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) e. ( 1 ... N ) <-> ( ( ( 2nd ` x ) < L /\ ( 2nd ` x ) e. ( 1 ... N ) ) \/ ( -. ( 2nd ` x ) < L /\ ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) ) ) ) | 
						
							| 107 |  | simplrr |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) e. NN ) | 
						
							| 108 | 107 | nnred |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) e. RR ) | 
						
							| 109 | 18 | nnred |  |-  ( ph -> L e. RR ) | 
						
							| 110 | 109 | ad3antrrr |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> L e. RR ) | 
						
							| 111 | 3 | nnred |  |-  ( ph -> N e. RR ) | 
						
							| 112 | 111 | ad3antrrr |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> N e. RR ) | 
						
							| 113 |  | simpr |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) < L ) | 
						
							| 114 | 108 110 113 | ltled |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) <_ L ) | 
						
							| 115 |  | elfzle2 |  |-  ( L e. ( 1 ... N ) -> L <_ N ) | 
						
							| 116 | 5 115 | syl |  |-  ( ph -> L <_ N ) | 
						
							| 117 | 116 | ad3antrrr |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> L <_ N ) | 
						
							| 118 | 108 110 112 114 117 | letrd |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) <_ N ) | 
						
							| 119 | 107 118 | jca |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ N ) ) | 
						
							| 120 | 3 | nnzd |  |-  ( ph -> N e. ZZ ) | 
						
							| 121 |  | fznn |  |-  ( N e. ZZ -> ( ( 2nd ` x ) e. ( 1 ... N ) <-> ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ N ) ) ) | 
						
							| 122 | 120 121 | syl |  |-  ( ph -> ( ( 2nd ` x ) e. ( 1 ... N ) <-> ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ N ) ) ) | 
						
							| 123 | 122 | ad3antrrr |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( ( 2nd ` x ) e. ( 1 ... N ) <-> ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ N ) ) ) | 
						
							| 124 | 119 123 | mpbird |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) e. ( 1 ... N ) ) | 
						
							| 125 | 108 110 112 113 117 | ltletrd |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) < N ) | 
						
							| 126 | 3 | ad3antrrr |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> N e. NN ) | 
						
							| 127 |  | nnltlem1 |  |-  ( ( ( 2nd ` x ) e. NN /\ N e. NN ) -> ( ( 2nd ` x ) < N <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) | 
						
							| 128 | 107 126 127 | syl2anc |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( ( 2nd ` x ) < N <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) | 
						
							| 129 | 125 128 | mpbid |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( 2nd ` x ) <_ ( N - 1 ) ) | 
						
							| 130 | 124 129 | 2thd |  |-  ( ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( 2nd ` x ) < L ) -> ( ( 2nd ` x ) e. ( 1 ... N ) <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) | 
						
							| 131 | 130 | pm5.32da |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 2nd ` x ) < L /\ ( 2nd ` x ) e. ( 1 ... N ) ) <-> ( ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) | 
						
							| 132 |  | fznn |  |-  ( N e. ZZ -> ( ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) <-> ( ( ( 2nd ` x ) + 1 ) e. NN /\ ( ( 2nd ` x ) + 1 ) <_ N ) ) ) | 
						
							| 133 | 120 132 | syl |  |-  ( ph -> ( ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) <-> ( ( ( 2nd ` x ) + 1 ) e. NN /\ ( ( 2nd ` x ) + 1 ) <_ N ) ) ) | 
						
							| 134 | 133 | ad2antrr |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) <-> ( ( ( 2nd ` x ) + 1 ) e. NN /\ ( ( 2nd ` x ) + 1 ) <_ N ) ) ) | 
						
							| 135 |  | simprr |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( 2nd ` x ) e. NN ) | 
						
							| 136 | 135 | peano2nnd |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( 2nd ` x ) + 1 ) e. NN ) | 
						
							| 137 | 136 | biantrurd |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 2nd ` x ) + 1 ) <_ N <-> ( ( ( 2nd ` x ) + 1 ) e. NN /\ ( ( 2nd ` x ) + 1 ) <_ N ) ) ) | 
						
							| 138 | 135 | nnzd |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( 2nd ` x ) e. ZZ ) | 
						
							| 139 | 120 | ad2antrr |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> N e. ZZ ) | 
						
							| 140 |  | zltp1le |  |-  ( ( ( 2nd ` x ) e. ZZ /\ N e. ZZ ) -> ( ( 2nd ` x ) < N <-> ( ( 2nd ` x ) + 1 ) <_ N ) ) | 
						
							| 141 |  | zltlem1 |  |-  ( ( ( 2nd ` x ) e. ZZ /\ N e. ZZ ) -> ( ( 2nd ` x ) < N <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) | 
						
							| 142 | 140 141 | bitr3d |  |-  ( ( ( 2nd ` x ) e. ZZ /\ N e. ZZ ) -> ( ( ( 2nd ` x ) + 1 ) <_ N <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) | 
						
							| 143 | 138 139 142 | syl2anc |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 2nd ` x ) + 1 ) <_ N <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) | 
						
							| 144 | 134 137 143 | 3bitr2d |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) | 
						
							| 145 | 144 | anbi2d |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( -. ( 2nd ` x ) < L /\ ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) ) <-> ( -. ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) | 
						
							| 146 | 131 145 | orbi12d |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( ( 2nd ` x ) < L /\ ( 2nd ` x ) e. ( 1 ... N ) ) \/ ( -. ( 2nd ` x ) < L /\ ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) ) ) <-> ( ( ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) \/ ( -. ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) ) | 
						
							| 147 |  | pm4.42 |  |-  ( ( 2nd ` x ) <_ ( N - 1 ) <-> ( ( ( 2nd ` x ) <_ ( N - 1 ) /\ ( 2nd ` x ) < L ) \/ ( ( 2nd ` x ) <_ ( N - 1 ) /\ -. ( 2nd ` x ) < L ) ) ) | 
						
							| 148 |  | ancom |  |-  ( ( ( 2nd ` x ) <_ ( N - 1 ) /\ ( 2nd ` x ) < L ) <-> ( ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) | 
						
							| 149 |  | ancom |  |-  ( ( ( 2nd ` x ) <_ ( N - 1 ) /\ -. ( 2nd ` x ) < L ) <-> ( -. ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) | 
						
							| 150 | 148 149 | orbi12i |  |-  ( ( ( ( 2nd ` x ) <_ ( N - 1 ) /\ ( 2nd ` x ) < L ) \/ ( ( 2nd ` x ) <_ ( N - 1 ) /\ -. ( 2nd ` x ) < L ) ) <-> ( ( ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) \/ ( -. ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) | 
						
							| 151 | 147 150 | bitri |  |-  ( ( 2nd ` x ) <_ ( N - 1 ) <-> ( ( ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) \/ ( -. ( 2nd ` x ) < L /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) | 
						
							| 152 | 146 151 | bitr4di |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( ( 2nd ` x ) < L /\ ( 2nd ` x ) e. ( 1 ... N ) ) \/ ( -. ( 2nd ` x ) < L /\ ( ( 2nd ` x ) + 1 ) e. ( 1 ... N ) ) ) <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) | 
						
							| 153 | 106 152 | bitrid |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) e. ( 1 ... N ) <-> ( 2nd ` x ) <_ ( N - 1 ) ) ) | 
						
							| 154 | 105 153 | anbi12d |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( if ( ( 1st ` x ) < K , ( 1st ` x ) , ( ( 1st ` x ) + 1 ) ) e. ( 1 ... M ) /\ if ( ( 2nd ` x ) < L , ( 2nd ` x ) , ( ( 2nd ` x ) + 1 ) ) e. ( 1 ... N ) ) <-> ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) | 
						
							| 155 | 57 154 | bitrd |  |-  ( ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) -> ( ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) <-> ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) | 
						
							| 156 | 155 | pm5.32da |  |-  ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) -> ( ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) ) | 
						
							| 157 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 158 | 72 157 | zsubcld |  |-  ( ph -> ( M - 1 ) e. ZZ ) | 
						
							| 159 |  | fznn |  |-  ( ( M - 1 ) e. ZZ -> ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) <-> ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ ( M - 1 ) ) ) ) | 
						
							| 160 | 158 159 | syl |  |-  ( ph -> ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) <-> ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ ( M - 1 ) ) ) ) | 
						
							| 161 | 120 157 | zsubcld |  |-  ( ph -> ( N - 1 ) e. ZZ ) | 
						
							| 162 |  | fznn |  |-  ( ( N - 1 ) e. ZZ -> ( ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) <-> ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) | 
						
							| 163 | 161 162 | syl |  |-  ( ph -> ( ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) <-> ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) | 
						
							| 164 | 160 163 | anbi12d |  |-  ( ph -> ( ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) /\ ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) ) <-> ( ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ ( M - 1 ) ) /\ ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) ) | 
						
							| 165 |  | an4 |  |-  ( ( ( ( 1st ` x ) e. NN /\ ( 1st ` x ) <_ ( M - 1 ) ) /\ ( ( 2nd ` x ) e. NN /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) <-> ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) | 
						
							| 166 | 164 165 | bitrdi |  |-  ( ph -> ( ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) /\ ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) ) <-> ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) ) | 
						
							| 167 | 166 | adantr |  |-  ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) -> ( ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) /\ ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) ) <-> ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( 1st ` x ) <_ ( M - 1 ) /\ ( 2nd ` x ) <_ ( N - 1 ) ) ) ) ) | 
						
							| 168 | 156 167 | bitr4d |  |-  ( ( ph /\ x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) -> ( ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) /\ ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) ) ) ) | 
						
							| 169 | 168 | pm5.32da |  |-  ( ph -> ( ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) <-> ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) /\ ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) ) ) ) ) | 
						
							| 170 |  | elxp6 |  |-  ( x e. ( NN X. NN ) <-> ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) ) | 
						
							| 171 | 170 | anbi1i |  |-  ( ( x e. ( NN X. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) | 
						
							| 172 |  | anass |  |-  ( ( ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) ) | 
						
							| 173 | 171 172 | bitri |  |-  ( ( x e. ( NN X. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( ( 1st ` x ) e. NN /\ ( 2nd ` x ) e. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) ) ) | 
						
							| 174 |  | elxp6 |  |-  ( x e. ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) <-> ( x = <. ( 1st ` x ) , ( 2nd ` x ) >. /\ ( ( 1st ` x ) e. ( 1 ... ( M - 1 ) ) /\ ( 2nd ` x ) e. ( 1 ... ( N - 1 ) ) ) ) ) | 
						
							| 175 | 169 173 174 | 3bitr4g |  |-  ( ph -> ( ( x e. ( NN X. NN ) /\ ( ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ` x ) e. ( ( 1 ... M ) X. ( 1 ... N ) ) ) <-> x e. ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) | 
						
							| 176 | 31 36 175 | 3bitrd |  |-  ( ph -> ( x e. ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " dom A ) <-> x e. ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) | 
						
							| 177 | 176 | eqrdv |  |-  ( ph -> ( `' ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) " dom A ) = ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 178 | 27 177 | eqtrid |  |-  ( ph -> dom ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) = ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 179 | 26 178 | eqtrd |  |-  ( ph -> dom S = ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) | 
						
							| 180 | 179 | feq2d |  |-  ( ph -> ( S : dom S --> ran S <-> S : ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) --> ran S ) ) | 
						
							| 181 | 25 180 | mpbid |  |-  ( ph -> S : ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) --> ran S ) | 
						
							| 182 | 21 | rneqd |  |-  ( ph -> ran S = ran ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) ) | 
						
							| 183 |  | rncoss |  |-  ran ( A o. ( i e. NN , j e. NN |-> <. if ( i < K , i , ( i + 1 ) ) , if ( j < L , j , ( j + 1 ) ) >. ) ) C_ ran A | 
						
							| 184 | 182 183 | eqsstrdi |  |-  ( ph -> ran S C_ ran A ) | 
						
							| 185 |  | frn |  |-  ( A : ( ( 1 ... M ) X. ( 1 ... N ) ) --> B -> ran A C_ B ) | 
						
							| 186 | 6 7 185 | 3syl |  |-  ( ph -> ran A C_ B ) | 
						
							| 187 | 184 186 | sstrd |  |-  ( ph -> ran S C_ B ) | 
						
							| 188 |  | fss |  |-  ( ( S : ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) --> ran S /\ ran S C_ B ) -> S : ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) --> B ) | 
						
							| 189 | 181 187 188 | syl2anc |  |-  ( ph -> S : ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) --> B ) | 
						
							| 190 |  | reldmmap |  |-  Rel dom ^m | 
						
							| 191 | 190 | ovrcl |  |-  ( A e. ( B ^m ( ( 1 ... M ) X. ( 1 ... N ) ) ) -> ( B e. _V /\ ( ( 1 ... M ) X. ( 1 ... N ) ) e. _V ) ) | 
						
							| 192 | 6 191 | syl |  |-  ( ph -> ( B e. _V /\ ( ( 1 ... M ) X. ( 1 ... N ) ) e. _V ) ) | 
						
							| 193 | 192 | simpld |  |-  ( ph -> B e. _V ) | 
						
							| 194 |  | ovex |  |-  ( 1 ... ( M - 1 ) ) e. _V | 
						
							| 195 |  | ovex |  |-  ( 1 ... ( N - 1 ) ) e. _V | 
						
							| 196 | 194 195 | xpex |  |-  ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) e. _V | 
						
							| 197 |  | elmapg |  |-  ( ( B e. _V /\ ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) e. _V ) -> ( S e. ( B ^m ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) <-> S : ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) --> B ) ) | 
						
							| 198 | 193 196 197 | sylancl |  |-  ( ph -> ( S e. ( B ^m ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) <-> S : ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) --> B ) ) | 
						
							| 199 | 189 198 | mpbird |  |-  ( ph -> S e. ( B ^m ( ( 1 ... ( M - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |