Description: Membership of a conditional operator. (Contributed by NM, 10-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ifel | |- ( if ( ph , A , B ) e. C <-> ( ( ph /\ A e. C ) \/ ( -. ph /\ B e. C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1 | |- ( if ( ph , A , B ) = A -> ( if ( ph , A , B ) e. C <-> A e. C ) ) |
|
| 2 | eleq1 | |- ( if ( ph , A , B ) = B -> ( if ( ph , A , B ) e. C <-> B e. C ) ) |
|
| 3 | 1 2 | elimif | |- ( if ( ph , A , B ) e. C <-> ( ( ph /\ A e. C ) \/ ( -. ph /\ B e. C ) ) ) |