Metamath Proof Explorer


Theorem 1smat1

Description: The submatrix of the identity matrix obtained by removing the ith row and the ith column is an identity matrix. Cf. 1marepvsma1 . (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses 1smat1.1 1 ˙ = 1 1 N Mat R
1smat1.r φ R Ring
1smat1.n φ N
1smat1.i φ I 1 N
Assertion 1smat1 φ I subMat 1 1 ˙ I = 1 1 N 1 Mat R

Proof

Step Hyp Ref Expression
1 1smat1.1 1 ˙ = 1 1 N Mat R
2 1smat1.r φ R Ring
3 1smat1.n φ N
4 1smat1.i φ I 1 N
5 eqid I subMat 1 1 ˙ I = I subMat 1 1 ˙ I
6 3 adantr φ i 1 N 1 j 1 N 1 N
7 4 adantr φ i 1 N 1 j 1 N 1 I 1 N
8 fzfi 1 N Fin
9 eqid 1 N Mat R = 1 N Mat R
10 eqid Base 1 N Mat R = Base 1 N Mat R
11 9 10 1 mat1bas R Ring 1 N Fin 1 ˙ Base 1 N Mat R
12 2 8 11 sylancl φ 1 ˙ Base 1 N Mat R
13 eqid Base R = Base R
14 9 13 matbas2 1 N Fin R Ring Base R 1 N × 1 N = Base 1 N Mat R
15 8 2 14 sylancr φ Base R 1 N × 1 N = Base 1 N Mat R
16 12 15 eleqtrrd φ 1 ˙ Base R 1 N × 1 N
17 16 adantr φ i 1 N 1 j 1 N 1 1 ˙ Base R 1 N × 1 N
18 fz1ssnn 1 N 1
19 simprl φ i 1 N 1 j 1 N 1 i 1 N 1
20 18 19 sselid φ i 1 N 1 j 1 N 1 i
21 simprr φ i 1 N 1 j 1 N 1 j 1 N 1
22 18 21 sselid φ i 1 N 1 j 1 N 1 j
23 eqidd φ i 1 N 1 j 1 N 1 if i < I i i + 1 = if i < I i i + 1
24 eqidd φ i 1 N 1 j 1 N 1 if j < I j j + 1 = if j < I j j + 1
25 5 6 6 7 7 17 20 22 23 24 smatlem φ i 1 N 1 j 1 N 1 i I subMat 1 1 ˙ I j = if i < I i i + 1 1 ˙ if j < I j j + 1
26 eqid 1 R = 1 R
27 eqid 0 R = 0 R
28 8 a1i φ i 1 N 1 j 1 N 1 1 N Fin
29 2 adantr φ i 1 N 1 j 1 N 1 R Ring
30 nnuz = 1
31 20 30 eleqtrdi φ i 1 N 1 j 1 N 1 i 1
32 fznatpl1 N i 1 N 1 i + 1 1 N
33 6 19 32 syl2anc φ i 1 N 1 j 1 N 1 i + 1 1 N
34 peano2fzr i 1 i + 1 1 N i 1 N
35 31 33 34 syl2anc φ i 1 N 1 j 1 N 1 i 1 N
36 35 33 jca φ i 1 N 1 j 1 N 1 i 1 N i + 1 1 N
37 eleq1 i = if i < I i i + 1 i 1 N if i < I i i + 1 1 N
38 eleq1 i + 1 = if i < I i i + 1 i + 1 1 N if i < I i i + 1 1 N
39 37 38 ifboth i 1 N i + 1 1 N if i < I i i + 1 1 N
40 36 39 syl φ i 1 N 1 j 1 N 1 if i < I i i + 1 1 N
41 22 30 eleqtrdi φ i 1 N 1 j 1 N 1 j 1
42 fznatpl1 N j 1 N 1 j + 1 1 N
43 6 21 42 syl2anc φ i 1 N 1 j 1 N 1 j + 1 1 N
44 peano2fzr j 1 j + 1 1 N j 1 N
45 41 43 44 syl2anc φ i 1 N 1 j 1 N 1 j 1 N
46 45 43 jca φ i 1 N 1 j 1 N 1 j 1 N j + 1 1 N
47 eleq1 j = if j < I j j + 1 j 1 N if j < I j j + 1 1 N
48 eleq1 j + 1 = if j < I j j + 1 j + 1 1 N if j < I j j + 1 1 N
49 47 48 ifboth j 1 N j + 1 1 N if j < I j j + 1 1 N
50 46 49 syl φ i 1 N 1 j 1 N 1 if j < I j j + 1 1 N
51 9 26 27 28 29 40 50 1 mat1ov φ i 1 N 1 j 1 N 1 if i < I i i + 1 1 ˙ if j < I j j + 1 = if if i < I i i + 1 = if j < I j j + 1 1 R 0 R
52 simpr φ i 1 N 1 j 1 N 1 i < I i < I
53 52 iftrued φ i 1 N 1 j 1 N 1 i < I if i < I i i + 1 = i
54 53 eqeq1d φ i 1 N 1 j 1 N 1 i < I if i < I i i + 1 = if j < I j j + 1 i = if j < I j j + 1
55 simpr φ i 1 N 1 j 1 N 1 i < I j < I j < I
56 55 iftrued φ i 1 N 1 j 1 N 1 i < I j < I if j < I j j + 1 = j
57 56 eqeq2d φ i 1 N 1 j 1 N 1 i < I j < I i = if j < I j j + 1 i = j
58 simpr φ i 1 N 1 j 1 N 1 i < I ¬ j < I ¬ j < I
59 58 iffalsed φ i 1 N 1 j 1 N 1 i < I ¬ j < I if j < I j j + 1 = j + 1
60 59 eqeq2d φ i 1 N 1 j 1 N 1 i < I ¬ j < I i = if j < I j j + 1 i = j + 1
61 20 nnred φ i 1 N 1 j 1 N 1 i
62 61 ad2antrr φ i 1 N 1 j 1 N 1 i < I ¬ j < I i
63 fz1ssnn 1 N
64 63 4 sselid φ I
65 64 nnred φ I
66 65 ad3antrrr φ i 1 N 1 j 1 N 1 i < I ¬ j < I I
67 22 nnred φ i 1 N 1 j 1 N 1 j
68 67 ad2antrr φ i 1 N 1 j 1 N 1 i < I ¬ j < I j
69 1red φ i 1 N 1 j 1 N 1 i < I ¬ j < I 1
70 68 69 readdcld φ i 1 N 1 j 1 N 1 i < I ¬ j < I j + 1
71 52 adantr φ i 1 N 1 j 1 N 1 i < I ¬ j < I i < I
72 64 nnzd φ I
73 72 ad3antrrr φ i 1 N 1 j 1 N 1 i < I ¬ j < I I
74 22 nnzd φ i 1 N 1 j 1 N 1 j
75 74 ad2antrr φ i 1 N 1 j 1 N 1 i < I ¬ j < I j
76 66 68 58 nltled φ i 1 N 1 j 1 N 1 i < I ¬ j < I I j
77 zleltp1 I j I j I < j + 1
78 77 biimpa I j I j I < j + 1
79 73 75 76 78 syl21anc φ i 1 N 1 j 1 N 1 i < I ¬ j < I I < j + 1
80 62 66 70 71 79 lttrd φ i 1 N 1 j 1 N 1 i < I ¬ j < I i < j + 1
81 62 80 ltned φ i 1 N 1 j 1 N 1 i < I ¬ j < I i j + 1
82 81 neneqd φ i 1 N 1 j 1 N 1 i < I ¬ j < I ¬ i = j + 1
83 62 66 68 71 76 ltletrd φ i 1 N 1 j 1 N 1 i < I ¬ j < I i < j
84 62 83 ltned φ i 1 N 1 j 1 N 1 i < I ¬ j < I i j
85 84 neneqd φ i 1 N 1 j 1 N 1 i < I ¬ j < I ¬ i = j
86 82 85 2falsed φ i 1 N 1 j 1 N 1 i < I ¬ j < I i = j + 1 i = j
87 60 86 bitrd φ i 1 N 1 j 1 N 1 i < I ¬ j < I i = if j < I j j + 1 i = j
88 57 87 pm2.61dan φ i 1 N 1 j 1 N 1 i < I i = if j < I j j + 1 i = j
89 54 88 bitrd φ i 1 N 1 j 1 N 1 i < I if i < I i i + 1 = if j < I j j + 1 i = j
90 simpr φ i 1 N 1 j 1 N 1 ¬ i < I ¬ i < I
91 90 iffalsed φ i 1 N 1 j 1 N 1 ¬ i < I if i < I i i + 1 = i + 1
92 91 eqeq1d φ i 1 N 1 j 1 N 1 ¬ i < I if i < I i i + 1 = if j < I j j + 1 i + 1 = if j < I j j + 1
93 simpr φ i 1 N 1 j 1 N 1 ¬ i < I j < I j < I
94 93 iftrued φ i 1 N 1 j 1 N 1 ¬ i < I j < I if j < I j j + 1 = j
95 94 eqeq2d φ i 1 N 1 j 1 N 1 ¬ i < I j < I i + 1 = if j < I j j + 1 i + 1 = j
96 67 ad2antrr φ i 1 N 1 j 1 N 1 ¬ i < I j < I j
97 65 ad3antrrr φ i 1 N 1 j 1 N 1 ¬ i < I j < I I
98 61 ad2antrr φ i 1 N 1 j 1 N 1 ¬ i < I j < I i
99 1red φ i 1 N 1 j 1 N 1 ¬ i < I j < I 1
100 98 99 readdcld φ i 1 N 1 j 1 N 1 ¬ i < I j < I i + 1
101 72 ad3antrrr φ i 1 N 1 j 1 N 1 ¬ i < I j < I I
102 20 nnzd φ i 1 N 1 j 1 N 1 i
103 102 ad2antrr φ i 1 N 1 j 1 N 1 ¬ i < I j < I i
104 90 adantr φ i 1 N 1 j 1 N 1 ¬ i < I j < I ¬ i < I
105 97 98 104 nltled φ i 1 N 1 j 1 N 1 ¬ i < I j < I I i
106 zleltp1 I i I i I < i + 1
107 106 biimpa I i I i I < i + 1
108 101 103 105 107 syl21anc φ i 1 N 1 j 1 N 1 ¬ i < I j < I I < i + 1
109 96 97 100 93 108 lttrd φ i 1 N 1 j 1 N 1 ¬ i < I j < I j < i + 1
110 96 109 ltned φ i 1 N 1 j 1 N 1 ¬ i < I j < I j i + 1
111 110 necomd φ i 1 N 1 j 1 N 1 ¬ i < I j < I i + 1 j
112 111 neneqd φ i 1 N 1 j 1 N 1 ¬ i < I j < I ¬ i + 1 = j
113 96 97 98 93 105 ltletrd φ i 1 N 1 j 1 N 1 ¬ i < I j < I j < i
114 96 113 ltned φ i 1 N 1 j 1 N 1 ¬ i < I j < I j i
115 114 necomd φ i 1 N 1 j 1 N 1 ¬ i < I j < I i j
116 115 neneqd φ i 1 N 1 j 1 N 1 ¬ i < I j < I ¬ i = j
117 112 116 2falsed φ i 1 N 1 j 1 N 1 ¬ i < I j < I i + 1 = j i = j
118 95 117 bitrd φ i 1 N 1 j 1 N 1 ¬ i < I j < I i + 1 = if j < I j j + 1 i = j
119 simpr φ i 1 N 1 j 1 N 1 ¬ i < I ¬ j < I ¬ j < I
120 119 iffalsed φ i 1 N 1 j 1 N 1 ¬ i < I ¬ j < I if j < I j j + 1 = j + 1
121 120 eqeq2d φ i 1 N 1 j 1 N 1 ¬ i < I ¬ j < I i + 1 = if j < I j j + 1 i + 1 = j + 1
122 20 nncnd φ i 1 N 1 j 1 N 1 i
123 122 ad3antrrr φ i 1 N 1 j 1 N 1 ¬ i < I ¬ j < I i + 1 = j + 1 i
124 22 nncnd φ i 1 N 1 j 1 N 1 j
125 124 ad3antrrr φ i 1 N 1 j 1 N 1 ¬ i < I ¬ j < I i + 1 = j + 1 j
126 1cnd φ i 1 N 1 j 1 N 1 ¬ i < I ¬ j < I i + 1 = j + 1 1
127 simpr φ i 1 N 1 j 1 N 1 ¬ i < I ¬ j < I i + 1 = j + 1 i + 1 = j + 1
128 123 125 126 127 addcan2ad φ i 1 N 1 j 1 N 1 ¬ i < I ¬ j < I i + 1 = j + 1 i = j
129 simpr φ i 1 N 1 j 1 N 1 ¬ i < I ¬ j < I i = j i = j
130 129 oveq1d φ i 1 N 1 j 1 N 1 ¬ i < I ¬ j < I i = j i + 1 = j + 1
131 128 130 impbida φ i 1 N 1 j 1 N 1 ¬ i < I ¬ j < I i + 1 = j + 1 i = j
132 121 131 bitrd φ i 1 N 1 j 1 N 1 ¬ i < I ¬ j < I i + 1 = if j < I j j + 1 i = j
133 118 132 pm2.61dan φ i 1 N 1 j 1 N 1 ¬ i < I i + 1 = if j < I j j + 1 i = j
134 92 133 bitrd φ i 1 N 1 j 1 N 1 ¬ i < I if i < I i i + 1 = if j < I j j + 1 i = j
135 89 134 pm2.61dan φ i 1 N 1 j 1 N 1 if i < I i i + 1 = if j < I j j + 1 i = j
136 135 ifbid φ i 1 N 1 j 1 N 1 if if i < I i i + 1 = if j < I j j + 1 1 R 0 R = if i = j 1 R 0 R
137 eqid 1 N 1 Mat R = 1 N 1 Mat R
138 fzfid φ i 1 N 1 j 1 N 1 1 N 1 Fin
139 eqid 1 1 N 1 Mat R = 1 1 N 1 Mat R
140 137 26 27 138 29 19 21 139 mat1ov φ i 1 N 1 j 1 N 1 i 1 1 N 1 Mat R j = if i = j 1 R 0 R
141 136 140 eqtr4d φ i 1 N 1 j 1 N 1 if if i < I i i + 1 = if j < I j j + 1 1 R 0 R = i 1 1 N 1 Mat R j
142 25 51 141 3eqtrd φ i 1 N 1 j 1 N 1 i I subMat 1 1 ˙ I j = i 1 1 N 1 Mat R j
143 142 ralrimivva φ i 1 N 1 j 1 N 1 i I subMat 1 1 ˙ I j = i 1 1 N 1 Mat R j
144 5 3 3 4 4 16 smatrcl φ I subMat 1 1 ˙ I Base R 1 N 1 × 1 N 1
145 elmapfn I subMat 1 1 ˙ I Base R 1 N 1 × 1 N 1 I subMat 1 1 ˙ I Fn 1 N 1 × 1 N 1
146 144 145 syl φ I subMat 1 1 ˙ I Fn 1 N 1 × 1 N 1
147 fzfi 1 N 1 Fin
148 eqid Base 1 N 1 Mat R = Base 1 N 1 Mat R
149 137 148 139 mat1bas R Ring 1 N 1 Fin 1 1 N 1 Mat R Base 1 N 1 Mat R
150 2 147 149 sylancl φ 1 1 N 1 Mat R Base 1 N 1 Mat R
151 137 13 matbas2 1 N 1 Fin R Ring Base R 1 N 1 × 1 N 1 = Base 1 N 1 Mat R
152 147 2 151 sylancr φ Base R 1 N 1 × 1 N 1 = Base 1 N 1 Mat R
153 150 152 eleqtrrd φ 1 1 N 1 Mat R Base R 1 N 1 × 1 N 1
154 elmapfn 1 1 N 1 Mat R Base R 1 N 1 × 1 N 1 1 1 N 1 Mat R Fn 1 N 1 × 1 N 1
155 153 154 syl φ 1 1 N 1 Mat R Fn 1 N 1 × 1 N 1
156 eqfnov2 I subMat 1 1 ˙ I Fn 1 N 1 × 1 N 1 1 1 N 1 Mat R Fn 1 N 1 × 1 N 1 I subMat 1 1 ˙ I = 1 1 N 1 Mat R i 1 N 1 j 1 N 1 i I subMat 1 1 ˙ I j = i 1 1 N 1 Mat R j
157 146 155 156 syl2anc φ I subMat 1 1 ˙ I = 1 1 N 1 Mat R i 1 N 1 j 1 N 1 i I subMat 1 1 ˙ I j = i 1 1 N 1 Mat R j
158 143 157 mpbird φ I subMat 1 1 ˙ I = 1 1 N 1 Mat R