Step |
Hyp |
Ref |
Expression |
1 |
|
1smat1.1 |
|
2 |
|
1smat1.r |
|
3 |
|
1smat1.n |
|
4 |
|
1smat1.i |
|
5 |
|
eqid |
|
6 |
3
|
adantr |
|
7 |
4
|
adantr |
|
8 |
|
fzfi |
|
9 |
|
eqid |
|
10 |
|
eqid |
|
11 |
9 10 1
|
mat1bas |
|
12 |
2 8 11
|
sylancl |
|
13 |
|
eqid |
|
14 |
9 13
|
matbas2 |
|
15 |
8 2 14
|
sylancr |
|
16 |
12 15
|
eleqtrrd |
|
17 |
16
|
adantr |
|
18 |
|
fz1ssnn |
|
19 |
|
simprl |
|
20 |
18 19
|
sselid |
|
21 |
|
simprr |
|
22 |
18 21
|
sselid |
|
23 |
|
eqidd |
|
24 |
|
eqidd |
|
25 |
5 6 6 7 7 17 20 22 23 24
|
smatlem |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
8
|
a1i |
|
29 |
2
|
adantr |
|
30 |
|
nnuz |
|
31 |
20 30
|
eleqtrdi |
|
32 |
|
fznatpl1 |
|
33 |
6 19 32
|
syl2anc |
|
34 |
|
peano2fzr |
|
35 |
31 33 34
|
syl2anc |
|
36 |
35 33
|
jca |
|
37 |
|
eleq1 |
|
38 |
|
eleq1 |
|
39 |
37 38
|
ifboth |
|
40 |
36 39
|
syl |
|
41 |
22 30
|
eleqtrdi |
|
42 |
|
fznatpl1 |
|
43 |
6 21 42
|
syl2anc |
|
44 |
|
peano2fzr |
|
45 |
41 43 44
|
syl2anc |
|
46 |
45 43
|
jca |
|
47 |
|
eleq1 |
|
48 |
|
eleq1 |
|
49 |
47 48
|
ifboth |
|
50 |
46 49
|
syl |
|
51 |
9 26 27 28 29 40 50 1
|
mat1ov |
|
52 |
|
simpr |
|
53 |
52
|
iftrued |
|
54 |
53
|
eqeq1d |
|
55 |
|
simpr |
|
56 |
55
|
iftrued |
|
57 |
56
|
eqeq2d |
|
58 |
|
simpr |
|
59 |
58
|
iffalsed |
|
60 |
59
|
eqeq2d |
|
61 |
20
|
nnred |
|
62 |
61
|
ad2antrr |
|
63 |
|
fz1ssnn |
|
64 |
63 4
|
sselid |
|
65 |
64
|
nnred |
|
66 |
65
|
ad3antrrr |
|
67 |
22
|
nnred |
|
68 |
67
|
ad2antrr |
|
69 |
|
1red |
|
70 |
68 69
|
readdcld |
|
71 |
52
|
adantr |
|
72 |
64
|
nnzd |
|
73 |
72
|
ad3antrrr |
|
74 |
22
|
nnzd |
|
75 |
74
|
ad2antrr |
|
76 |
66 68 58
|
nltled |
|
77 |
|
zleltp1 |
|
78 |
77
|
biimpa |
|
79 |
73 75 76 78
|
syl21anc |
|
80 |
62 66 70 71 79
|
lttrd |
|
81 |
62 80
|
ltned |
|
82 |
81
|
neneqd |
|
83 |
62 66 68 71 76
|
ltletrd |
|
84 |
62 83
|
ltned |
|
85 |
84
|
neneqd |
|
86 |
82 85
|
2falsed |
|
87 |
60 86
|
bitrd |
|
88 |
57 87
|
pm2.61dan |
|
89 |
54 88
|
bitrd |
|
90 |
|
simpr |
|
91 |
90
|
iffalsed |
|
92 |
91
|
eqeq1d |
|
93 |
|
simpr |
|
94 |
93
|
iftrued |
|
95 |
94
|
eqeq2d |
|
96 |
67
|
ad2antrr |
|
97 |
65
|
ad3antrrr |
|
98 |
61
|
ad2antrr |
|
99 |
|
1red |
|
100 |
98 99
|
readdcld |
|
101 |
72
|
ad3antrrr |
|
102 |
20
|
nnzd |
|
103 |
102
|
ad2antrr |
|
104 |
90
|
adantr |
|
105 |
97 98 104
|
nltled |
|
106 |
|
zleltp1 |
|
107 |
106
|
biimpa |
|
108 |
101 103 105 107
|
syl21anc |
|
109 |
96 97 100 93 108
|
lttrd |
|
110 |
96 109
|
ltned |
|
111 |
110
|
necomd |
|
112 |
111
|
neneqd |
|
113 |
96 97 98 93 105
|
ltletrd |
|
114 |
96 113
|
ltned |
|
115 |
114
|
necomd |
|
116 |
115
|
neneqd |
|
117 |
112 116
|
2falsed |
|
118 |
95 117
|
bitrd |
|
119 |
|
simpr |
|
120 |
119
|
iffalsed |
|
121 |
120
|
eqeq2d |
|
122 |
20
|
nncnd |
|
123 |
122
|
ad3antrrr |
|
124 |
22
|
nncnd |
|
125 |
124
|
ad3antrrr |
|
126 |
|
1cnd |
|
127 |
|
simpr |
|
128 |
123 125 126 127
|
addcan2ad |
|
129 |
|
simpr |
|
130 |
129
|
oveq1d |
|
131 |
128 130
|
impbida |
|
132 |
121 131
|
bitrd |
|
133 |
118 132
|
pm2.61dan |
|
134 |
92 133
|
bitrd |
|
135 |
89 134
|
pm2.61dan |
|
136 |
135
|
ifbid |
|
137 |
|
eqid |
|
138 |
|
fzfid |
|
139 |
|
eqid |
|
140 |
137 26 27 138 29 19 21 139
|
mat1ov |
|
141 |
136 140
|
eqtr4d |
|
142 |
25 51 141
|
3eqtrd |
|
143 |
142
|
ralrimivva |
|
144 |
5 3 3 4 4 16
|
smatrcl |
|
145 |
|
elmapfn |
|
146 |
144 145
|
syl |
|
147 |
|
fzfi |
|
148 |
|
eqid |
|
149 |
137 148 139
|
mat1bas |
|
150 |
2 147 149
|
sylancl |
|
151 |
137 13
|
matbas2 |
|
152 |
147 2 151
|
sylancr |
|
153 |
150 152
|
eleqtrrd |
|
154 |
|
elmapfn |
|
155 |
153 154
|
syl |
|
156 |
|
eqfnov2 |
|
157 |
146 155 156
|
syl2anc |
|
158 |
143 157
|
mpbird |
|