| Step |
Hyp |
Ref |
Expression |
| 1 |
|
1smat1.1 |
|
| 2 |
|
1smat1.r |
|
| 3 |
|
1smat1.n |
|
| 4 |
|
1smat1.i |
|
| 5 |
|
eqid |
|
| 6 |
3
|
adantr |
|
| 7 |
4
|
adantr |
|
| 8 |
|
fzfi |
|
| 9 |
|
eqid |
|
| 10 |
|
eqid |
|
| 11 |
9 10 1
|
mat1bas |
|
| 12 |
2 8 11
|
sylancl |
|
| 13 |
|
eqid |
|
| 14 |
9 13
|
matbas2 |
|
| 15 |
8 2 14
|
sylancr |
|
| 16 |
12 15
|
eleqtrrd |
|
| 17 |
16
|
adantr |
|
| 18 |
|
fz1ssnn |
|
| 19 |
|
simprl |
|
| 20 |
18 19
|
sselid |
|
| 21 |
|
simprr |
|
| 22 |
18 21
|
sselid |
|
| 23 |
|
eqidd |
|
| 24 |
|
eqidd |
|
| 25 |
5 6 6 7 7 17 20 22 23 24
|
smatlem |
|
| 26 |
|
eqid |
|
| 27 |
|
eqid |
|
| 28 |
8
|
a1i |
|
| 29 |
2
|
adantr |
|
| 30 |
|
nnuz |
|
| 31 |
20 30
|
eleqtrdi |
|
| 32 |
|
fznatpl1 |
|
| 33 |
6 19 32
|
syl2anc |
|
| 34 |
|
peano2fzr |
|
| 35 |
31 33 34
|
syl2anc |
|
| 36 |
35 33
|
jca |
|
| 37 |
|
eleq1 |
|
| 38 |
|
eleq1 |
|
| 39 |
37 38
|
ifboth |
|
| 40 |
36 39
|
syl |
|
| 41 |
22 30
|
eleqtrdi |
|
| 42 |
|
fznatpl1 |
|
| 43 |
6 21 42
|
syl2anc |
|
| 44 |
|
peano2fzr |
|
| 45 |
41 43 44
|
syl2anc |
|
| 46 |
45 43
|
jca |
|
| 47 |
|
eleq1 |
|
| 48 |
|
eleq1 |
|
| 49 |
47 48
|
ifboth |
|
| 50 |
46 49
|
syl |
|
| 51 |
9 26 27 28 29 40 50 1
|
mat1ov |
|
| 52 |
|
simpr |
|
| 53 |
52
|
iftrued |
|
| 54 |
53
|
eqeq1d |
|
| 55 |
|
simpr |
|
| 56 |
55
|
iftrued |
|
| 57 |
56
|
eqeq2d |
|
| 58 |
|
simpr |
|
| 59 |
58
|
iffalsed |
|
| 60 |
59
|
eqeq2d |
|
| 61 |
20
|
nnred |
|
| 62 |
61
|
ad2antrr |
|
| 63 |
|
fz1ssnn |
|
| 64 |
63 4
|
sselid |
|
| 65 |
64
|
nnred |
|
| 66 |
65
|
ad3antrrr |
|
| 67 |
22
|
nnred |
|
| 68 |
67
|
ad2antrr |
|
| 69 |
|
1red |
|
| 70 |
68 69
|
readdcld |
|
| 71 |
52
|
adantr |
|
| 72 |
64
|
nnzd |
|
| 73 |
72
|
ad3antrrr |
|
| 74 |
22
|
nnzd |
|
| 75 |
74
|
ad2antrr |
|
| 76 |
66 68 58
|
nltled |
|
| 77 |
|
zleltp1 |
|
| 78 |
77
|
biimpa |
|
| 79 |
73 75 76 78
|
syl21anc |
|
| 80 |
62 66 70 71 79
|
lttrd |
|
| 81 |
62 80
|
ltned |
|
| 82 |
81
|
neneqd |
|
| 83 |
62 66 68 71 76
|
ltletrd |
|
| 84 |
62 83
|
ltned |
|
| 85 |
84
|
neneqd |
|
| 86 |
82 85
|
2falsed |
|
| 87 |
60 86
|
bitrd |
|
| 88 |
57 87
|
pm2.61dan |
|
| 89 |
54 88
|
bitrd |
|
| 90 |
|
simpr |
|
| 91 |
90
|
iffalsed |
|
| 92 |
91
|
eqeq1d |
|
| 93 |
|
simpr |
|
| 94 |
93
|
iftrued |
|
| 95 |
94
|
eqeq2d |
|
| 96 |
67
|
ad2antrr |
|
| 97 |
65
|
ad3antrrr |
|
| 98 |
61
|
ad2antrr |
|
| 99 |
|
1red |
|
| 100 |
98 99
|
readdcld |
|
| 101 |
72
|
ad3antrrr |
|
| 102 |
20
|
nnzd |
|
| 103 |
102
|
ad2antrr |
|
| 104 |
90
|
adantr |
|
| 105 |
97 98 104
|
nltled |
|
| 106 |
|
zleltp1 |
|
| 107 |
106
|
biimpa |
|
| 108 |
101 103 105 107
|
syl21anc |
|
| 109 |
96 97 100 93 108
|
lttrd |
|
| 110 |
96 109
|
ltned |
|
| 111 |
110
|
necomd |
|
| 112 |
111
|
neneqd |
|
| 113 |
96 97 98 93 105
|
ltletrd |
|
| 114 |
96 113
|
ltned |
|
| 115 |
114
|
necomd |
|
| 116 |
115
|
neneqd |
|
| 117 |
112 116
|
2falsed |
|
| 118 |
95 117
|
bitrd |
|
| 119 |
|
simpr |
|
| 120 |
119
|
iffalsed |
|
| 121 |
120
|
eqeq2d |
|
| 122 |
20
|
nncnd |
|
| 123 |
122
|
ad3antrrr |
|
| 124 |
22
|
nncnd |
|
| 125 |
124
|
ad3antrrr |
|
| 126 |
|
1cnd |
|
| 127 |
|
simpr |
|
| 128 |
123 125 126 127
|
addcan2ad |
|
| 129 |
|
simpr |
|
| 130 |
129
|
oveq1d |
|
| 131 |
128 130
|
impbida |
|
| 132 |
121 131
|
bitrd |
|
| 133 |
118 132
|
pm2.61dan |
|
| 134 |
92 133
|
bitrd |
|
| 135 |
89 134
|
pm2.61dan |
|
| 136 |
135
|
ifbid |
|
| 137 |
|
eqid |
|
| 138 |
|
fzfid |
|
| 139 |
|
eqid |
|
| 140 |
137 26 27 138 29 19 21 139
|
mat1ov |
|
| 141 |
136 140
|
eqtr4d |
|
| 142 |
25 51 141
|
3eqtrd |
|
| 143 |
142
|
ralrimivva |
|
| 144 |
5 3 3 4 4 16
|
smatrcl |
|
| 145 |
|
elmapfn |
|
| 146 |
144 145
|
syl |
|
| 147 |
|
fzfi |
|
| 148 |
|
eqid |
|
| 149 |
137 148 139
|
mat1bas |
|
| 150 |
2 147 149
|
sylancl |
|
| 151 |
137 13
|
matbas2 |
|
| 152 |
147 2 151
|
sylancr |
|
| 153 |
150 152
|
eleqtrrd |
|
| 154 |
|
elmapfn |
|
| 155 |
153 154
|
syl |
|
| 156 |
|
eqfnov2 |
|
| 157 |
146 155 156
|
syl2anc |
|
| 158 |
143 157
|
mpbird |
|