Step |
Hyp |
Ref |
Expression |
1 |
|
submat1n.a |
|
2 |
|
submat1n.b |
|
3 |
|
fzdif2 |
|
4 |
|
nnuz |
|
5 |
3 4
|
eleq2s |
|
6 |
5
|
adantr |
|
7 |
6
|
adantr |
|
8 |
|
eqid |
|
9 |
|
elfz1end |
|
10 |
9
|
biimpi |
|
11 |
10
|
adantr |
|
12 |
11 9
|
sylibr |
|
13 |
12
|
adantr |
|
14 |
13 10
|
syl |
|
15 |
|
eqid |
|
16 |
1 15 2
|
matbas2i |
|
17 |
16
|
ad2antlr |
|
18 |
|
simprl |
|
19 |
|
nnz |
|
20 |
|
fzoval |
|
21 |
19 20
|
syl |
|
22 |
21 5
|
eqtr4d |
|
23 |
13 22
|
syl |
|
24 |
18 23
|
eleqtrrd |
|
25 |
|
simprr |
|
26 |
25 23
|
eleqtrrd |
|
27 |
8 13 13 14 14 17 24 26
|
smattl |
|
28 |
27
|
eqcomd |
|
29 |
6 7 28
|
mpoeq123dva |
|
30 |
|
simpr |
|
31 |
|
eqid |
|
32 |
1 31 2
|
submaval |
|
33 |
30 11 11 32
|
syl3anc |
|
34 |
|
eqid |
|
35 |
1 2 34 8 12 11 11 30
|
smatcl |
|
36 |
|
eqid |
|
37 |
36 34
|
matmpo |
|
38 |
35 37
|
syl |
|
39 |
29 33 38
|
3eqtr4rd |
|