Metamath Proof Explorer


Theorem submat1n

Description: One case where the submatrix with integer indices, subMat1 , and the general submatrix subMat , agree. (Contributed by Thierry Arnoux, 22-Aug-2020)

Ref Expression
Hypotheses submat1n.a A = 1 N Mat R
submat1n.b B = Base A
Assertion submat1n N M B N subMat 1 M N = N 1 N subMat R M N

Proof

Step Hyp Ref Expression
1 submat1n.a A = 1 N Mat R
2 submat1n.b B = Base A
3 fzdif2 N 1 1 N N = 1 N 1
4 nnuz = 1
5 3 4 eleq2s N 1 N N = 1 N 1
6 5 adantr N M B 1 N N = 1 N 1
7 6 adantr N M B i 1 N N 1 N N = 1 N 1
8 eqid N subMat 1 M N = N subMat 1 M N
9 elfz1end N N 1 N
10 9 biimpi N N 1 N
11 10 adantr N M B N 1 N
12 11 9 sylibr N M B N
13 12 adantr N M B i 1 N N j 1 N N N
14 13 10 syl N M B i 1 N N j 1 N N N 1 N
15 eqid Base R = Base R
16 1 15 2 matbas2i M B M Base R 1 N × 1 N
17 16 ad2antlr N M B i 1 N N j 1 N N M Base R 1 N × 1 N
18 simprl N M B i 1 N N j 1 N N i 1 N N
19 nnz N N
20 fzoval N 1 ..^ N = 1 N 1
21 19 20 syl N 1 ..^ N = 1 N 1
22 21 5 eqtr4d N 1 ..^ N = 1 N N
23 13 22 syl N M B i 1 N N j 1 N N 1 ..^ N = 1 N N
24 18 23 eleqtrrd N M B i 1 N N j 1 N N i 1 ..^ N
25 simprr N M B i 1 N N j 1 N N j 1 N N
26 25 23 eleqtrrd N M B i 1 N N j 1 N N j 1 ..^ N
27 8 13 13 14 14 17 24 26 smattl N M B i 1 N N j 1 N N i N subMat 1 M N j = i M j
28 27 eqcomd N M B i 1 N N j 1 N N i M j = i N subMat 1 M N j
29 6 7 28 mpoeq123dva N M B i 1 N N , j 1 N N i M j = i 1 N 1 , j 1 N 1 i N subMat 1 M N j
30 simpr N M B M B
31 eqid 1 N subMat R = 1 N subMat R
32 1 31 2 submaval M B N 1 N N 1 N N 1 N subMat R M N = i 1 N N , j 1 N N i M j
33 30 11 11 32 syl3anc N M B N 1 N subMat R M N = i 1 N N , j 1 N N i M j
34 eqid Base 1 N 1 Mat R = Base 1 N 1 Mat R
35 1 2 34 8 12 11 11 30 smatcl N M B N subMat 1 M N Base 1 N 1 Mat R
36 eqid 1 N 1 Mat R = 1 N 1 Mat R
37 36 34 matmpo N subMat 1 M N Base 1 N 1 Mat R N subMat 1 M N = i 1 N 1 , j 1 N 1 i N subMat 1 M N j
38 35 37 syl N M B N subMat 1 M N = i 1 N 1 , j 1 N 1 i N subMat 1 M N j
39 29 33 38 3eqtr4rd N M B N subMat 1 M N = N 1 N subMat R M N