Metamath Proof Explorer


Theorem matmpo

Description: Write a square matrix as a mapping operation. (Contributed by Thierry Arnoux, 16-Aug-2020)

Ref Expression
Hypotheses matmpo.a A=NMatR
matmpo.n B=BaseA
Assertion matmpo MBM=iN,jNiMj

Proof

Step Hyp Ref Expression
1 matmpo.a A=NMatR
2 matmpo.n B=BaseA
3 eqid BaseR=BaseR
4 1 3 2 matbas2i MBMBaseRN×N
5 elmapfn MBaseRN×NMFnN×N
6 4 5 syl MBMFnN×N
7 fnov MFnN×NM=iN,jNiMj
8 6 7 sylib MBM=iN,jNiMj