Metamath Proof Explorer


Theorem smattl

Description: Entries of a submatrix, top left. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s S = K subMat 1 A L
smat.m φ M
smat.n φ N
smat.k φ K 1 M
smat.l φ L 1 N
smat.a φ A B 1 M × 1 N
smattl.i φ I 1 ..^ K
smattl.j φ J 1 ..^ L
Assertion smattl φ I S J = I A J

Proof

Step Hyp Ref Expression
1 smat.s S = K subMat 1 A L
2 smat.m φ M
3 smat.n φ N
4 smat.k φ K 1 M
5 smat.l φ L 1 N
6 smat.a φ A B 1 M × 1 N
7 smattl.i φ I 1 ..^ K
8 smattl.j φ J 1 ..^ L
9 fzossnn 1 ..^ K
10 9 7 sselid φ I
11 fzossnn 1 ..^ L
12 11 8 sselid φ J
13 elfzolt2 I 1 ..^ K I < K
14 7 13 syl φ I < K
15 14 iftrued φ if I < K I I + 1 = I
16 elfzolt2 J 1 ..^ L J < L
17 8 16 syl φ J < L
18 17 iftrued φ if J < L J J + 1 = J
19 1 2 3 4 5 6 10 12 15 18 smatlem φ I S J = I A J