Step |
Hyp |
Ref |
Expression |
1 |
|
smatcl.a |
|- A = ( ( 1 ... N ) Mat R ) |
2 |
|
smatcl.b |
|- B = ( Base ` A ) |
3 |
|
smatcl.c |
|- C = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) |
4 |
|
smatcl.s |
|- S = ( K ( subMat1 ` M ) L ) |
5 |
|
smatcl.n |
|- ( ph -> N e. NN ) |
6 |
|
smatcl.k |
|- ( ph -> K e. ( 1 ... N ) ) |
7 |
|
smatcl.l |
|- ( ph -> L e. ( 1 ... N ) ) |
8 |
|
smatcl.m |
|- ( ph -> M e. B ) |
9 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
10 |
1 9 2
|
matbas2i |
|- ( M e. B -> M e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) |
11 |
8 10
|
syl |
|- ( ph -> M e. ( ( Base ` R ) ^m ( ( 1 ... N ) X. ( 1 ... N ) ) ) ) |
12 |
4 5 5 6 7 11
|
smatrcl |
|- ( ph -> S e. ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) ) |
13 |
|
fzfi |
|- ( 1 ... ( N - 1 ) ) e. Fin |
14 |
1 2
|
matrcl |
|- ( M e. B -> ( ( 1 ... N ) e. Fin /\ R e. _V ) ) |
15 |
14
|
simprd |
|- ( M e. B -> R e. _V ) |
16 |
8 15
|
syl |
|- ( ph -> R e. _V ) |
17 |
|
eqid |
|- ( ( 1 ... ( N - 1 ) ) Mat R ) = ( ( 1 ... ( N - 1 ) ) Mat R ) |
18 |
17 9
|
matbas2 |
|- ( ( ( 1 ... ( N - 1 ) ) e. Fin /\ R e. _V ) -> ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
19 |
13 16 18
|
sylancr |
|- ( ph -> ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) = ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
20 |
19
|
eleq2d |
|- ( ph -> ( S e. ( ( Base ` R ) ^m ( ( 1 ... ( N - 1 ) ) X. ( 1 ... ( N - 1 ) ) ) ) <-> S e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) ) |
21 |
12 20
|
mpbid |
|- ( ph -> S e. ( Base ` ( ( 1 ... ( N - 1 ) ) Mat R ) ) ) |
22 |
21 3
|
eleqtrrdi |
|- ( ph -> S e. C ) |