Metamath Proof Explorer


Theorem smatbr

Description: Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s S=KsubMat1AL
smat.m φM
smat.n φN
smat.k φK1M
smat.l φL1N
smat.a φAB1M×1N
smatbr.i φIKM
smatbr.j φJLN
Assertion smatbr φISJ=I+1AJ+1

Proof

Step Hyp Ref Expression
1 smat.s S=KsubMat1AL
2 smat.m φM
3 smat.n φN
4 smat.k φK1M
5 smat.l φL1N
6 smat.a φAB1M×1N
7 smatbr.i φIKM
8 smatbr.j φJLN
9 fz1ssnn 1M
10 9 4 sselid φK
11 fzssnn KKM
12 10 11 syl φKM
13 12 7 sseldd φI
14 fz1ssnn 1N
15 14 5 sselid φL
16 fzssnn LLN
17 15 16 syl φLN
18 17 8 sseldd φJ
19 elfzle1 IKMKI
20 7 19 syl φKI
21 10 nnred φK
22 13 nnred φI
23 21 22 lenltd φKI¬I<K
24 20 23 mpbid φ¬I<K
25 24 iffalsed φifI<KII+1=I+1
26 elfzle1 JLNLJ
27 8 26 syl φLJ
28 15 nnred φL
29 18 nnred φJ
30 28 29 lenltd φLJ¬J<L
31 27 30 mpbid φ¬J<L
32 31 iffalsed φifJ<LJJ+1=J+1
33 1 2 3 4 5 6 13 18 25 32 smatlem φISJ=I+1AJ+1