Metamath Proof Explorer


Theorem smatbr

Description: Entries of a submatrix, bottom right. (Contributed by Thierry Arnoux, 19-Aug-2020)

Ref Expression
Hypotheses smat.s S = K subMat 1 A L
smat.m φ M
smat.n φ N
smat.k φ K 1 M
smat.l φ L 1 N
smat.a φ A B 1 M × 1 N
smatbr.i φ I K M
smatbr.j φ J L N
Assertion smatbr φ I S J = I + 1 A J + 1

Proof

Step Hyp Ref Expression
1 smat.s S = K subMat 1 A L
2 smat.m φ M
3 smat.n φ N
4 smat.k φ K 1 M
5 smat.l φ L 1 N
6 smat.a φ A B 1 M × 1 N
7 smatbr.i φ I K M
8 smatbr.j φ J L N
9 fz1ssnn 1 M
10 9 4 sselid φ K
11 fzssnn K K M
12 10 11 syl φ K M
13 12 7 sseldd φ I
14 fz1ssnn 1 N
15 14 5 sselid φ L
16 fzssnn L L N
17 15 16 syl φ L N
18 17 8 sseldd φ J
19 elfzle1 I K M K I
20 7 19 syl φ K I
21 10 nnred φ K
22 13 nnred φ I
23 21 22 lenltd φ K I ¬ I < K
24 20 23 mpbid φ ¬ I < K
25 24 iffalsed φ if I < K I I + 1 = I + 1
26 elfzle1 J L N L J
27 8 26 syl φ L J
28 15 nnred φ L
29 18 nnred φ J
30 28 29 lenltd φ L J ¬ J < L
31 27 30 mpbid φ ¬ J < L
32 31 iffalsed φ if J < L J J + 1 = J + 1
33 1 2 3 4 5 6 13 18 25 32 smatlem φ I S J = I + 1 A J + 1