Metamath Proof Explorer


Theorem nnltlem1

Description: Positive integer ordering relation. (Contributed by NM, 21-Jun-2005)

Ref Expression
Assertion nnltlem1 MNM<NMN1

Proof

Step Hyp Ref Expression
1 nnz MM
2 nnz NN
3 zltlem1 MNM<NMN1
4 1 2 3 syl2an MNM<NMN1