Metamath Proof Explorer


Theorem elxp6

Description: Membership in a Cartesian product. This version requires no quantifiers or dummy variables. See also elxp4 . (Contributed by NM, 9-Oct-2004)

Ref Expression
Assertion elxp6 AB×CA=1stA2ndA1stAB2ndAC

Proof

Step Hyp Ref Expression
1 elxp4 AB×CA=domAranAdomABranAC
2 1stval 1stA=domA
3 2ndval 2ndA=ranA
4 2 3 opeq12i 1stA2ndA=domAranA
5 4 eqeq2i A=1stA2ndAA=domAranA
6 2 eleq1i 1stABdomAB
7 3 eleq1i 2ndACranAC
8 6 7 anbi12i 1stAB2ndACdomABranAC
9 5 8 anbi12i A=1stA2ndA1stAB2ndACA=domAranAdomABranAC
10 1 9 bitr4i AB×CA=1stA2ndA1stAB2ndAC