Description: Define the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012)
Ref | Expression | ||
---|---|---|---|
Assertion | df-trans | |- Trans = ( _V \ ran ( ( _E o. _E ) \ _E ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ctrans | |- Trans |
|
1 | cvv | |- _V |
|
2 | cep | |- _E |
|
3 | 2 2 | ccom | |- ( _E o. _E ) |
4 | 3 2 | cdif | |- ( ( _E o. _E ) \ _E ) |
5 | 4 | crn | |- ran ( ( _E o. _E ) \ _E ) |
6 | 1 5 | cdif | |- ( _V \ ran ( ( _E o. _E ) \ _E ) ) |
7 | 0 6 | wceq | |- Trans = ( _V \ ran ( ( _E o. _E ) \ _E ) ) |