Metamath Proof Explorer


Definition df-trans

Description: Define the class of all transitive sets. (Contributed by Scott Fenton, 31-Mar-2012)

Ref Expression
Assertion df-trans Trans = ( V ∖ ran ( ( E ∘ E ) ∖ E ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 ctrans Trans
1 cvv V
2 cep E
3 2 2 ccom ( E ∘ E )
4 3 2 cdif ( ( E ∘ E ) ∖ E )
5 4 crn ran ( ( E ∘ E ) ∖ E )
6 1 5 cdif ( V ∖ ran ( ( E ∘ E ) ∖ E ) )
7 0 6 wceq Trans = ( V ∖ ran ( ( E ∘ E ) ∖ E ) )