Step |
Hyp |
Ref |
Expression |
0 |
|
cR |
|- R |
1 |
0
|
cttrcl |
|- t++ R |
2 |
|
vx |
|- x |
3 |
|
vy |
|- y |
4 |
|
vn |
|- n |
5 |
|
com |
|- _om |
6 |
|
c1o |
|- 1o |
7 |
5 6
|
cdif |
|- ( _om \ 1o ) |
8 |
|
vf |
|- f |
9 |
8
|
cv |
|- f |
10 |
4
|
cv |
|- n |
11 |
10
|
csuc |
|- suc n |
12 |
9 11
|
wfn |
|- f Fn suc n |
13 |
|
c0 |
|- (/) |
14 |
13 9
|
cfv |
|- ( f ` (/) ) |
15 |
2
|
cv |
|- x |
16 |
14 15
|
wceq |
|- ( f ` (/) ) = x |
17 |
10 9
|
cfv |
|- ( f ` n ) |
18 |
3
|
cv |
|- y |
19 |
17 18
|
wceq |
|- ( f ` n ) = y |
20 |
16 19
|
wa |
|- ( ( f ` (/) ) = x /\ ( f ` n ) = y ) |
21 |
|
vm |
|- m |
22 |
21
|
cv |
|- m |
23 |
22 9
|
cfv |
|- ( f ` m ) |
24 |
22
|
csuc |
|- suc m |
25 |
24 9
|
cfv |
|- ( f ` suc m ) |
26 |
23 25 0
|
wbr |
|- ( f ` m ) R ( f ` suc m ) |
27 |
26 21 10
|
wral |
|- A. m e. n ( f ` m ) R ( f ` suc m ) |
28 |
12 20 27
|
w3a |
|- ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) |
29 |
28 8
|
wex |
|- E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) |
30 |
29 4 7
|
wrex |
|- E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) |
31 |
30 2 3
|
copab |
|- { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } |
32 |
1 31
|
wceq |
|- t++ R = { <. x , y >. | E. n e. ( _om \ 1o ) E. f ( f Fn suc n /\ ( ( f ` (/) ) = x /\ ( f ` n ) = y ) /\ A. m e. n ( f ` m ) R ( f ` suc m ) ) } |