Step |
Hyp |
Ref |
Expression |
0 |
|
cR |
⊢ 𝑅 |
1 |
0
|
cttrcl |
⊢ t++ 𝑅 |
2 |
|
vx |
⊢ 𝑥 |
3 |
|
vy |
⊢ 𝑦 |
4 |
|
vn |
⊢ 𝑛 |
5 |
|
com |
⊢ ω |
6 |
|
c1o |
⊢ 1o |
7 |
5 6
|
cdif |
⊢ ( ω ∖ 1o ) |
8 |
|
vf |
⊢ 𝑓 |
9 |
8
|
cv |
⊢ 𝑓 |
10 |
4
|
cv |
⊢ 𝑛 |
11 |
10
|
csuc |
⊢ suc 𝑛 |
12 |
9 11
|
wfn |
⊢ 𝑓 Fn suc 𝑛 |
13 |
|
c0 |
⊢ ∅ |
14 |
13 9
|
cfv |
⊢ ( 𝑓 ‘ ∅ ) |
15 |
2
|
cv |
⊢ 𝑥 |
16 |
14 15
|
wceq |
⊢ ( 𝑓 ‘ ∅ ) = 𝑥 |
17 |
10 9
|
cfv |
⊢ ( 𝑓 ‘ 𝑛 ) |
18 |
3
|
cv |
⊢ 𝑦 |
19 |
17 18
|
wceq |
⊢ ( 𝑓 ‘ 𝑛 ) = 𝑦 |
20 |
16 19
|
wa |
⊢ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) |
21 |
|
vm |
⊢ 𝑚 |
22 |
21
|
cv |
⊢ 𝑚 |
23 |
22 9
|
cfv |
⊢ ( 𝑓 ‘ 𝑚 ) |
24 |
22
|
csuc |
⊢ suc 𝑚 |
25 |
24 9
|
cfv |
⊢ ( 𝑓 ‘ suc 𝑚 ) |
26 |
23 25 0
|
wbr |
⊢ ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) |
27 |
26 21 10
|
wral |
⊢ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) |
28 |
12 20 27
|
w3a |
⊢ ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) |
29 |
28 8
|
wex |
⊢ ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) |
30 |
29 4 7
|
wrex |
⊢ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) |
31 |
30 2 3
|
copab |
⊢ { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) } |
32 |
1 31
|
wceq |
⊢ t++ 𝑅 = { 〈 𝑥 , 𝑦 〉 ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓 ‘ 𝑛 ) = 𝑦 ) ∧ ∀ 𝑚 ∈ 𝑛 ( 𝑓 ‘ 𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) } |