Metamath Proof Explorer


Definition df-ttrcl

Description: Define the transitive closure of a class. This is the smallest relationship containing R (or more precisely, the relation ` ( R |`_V ) induced by R ) and having the transitive property. Definition from Levy p. 59, who denotes it as R * and calls it the "ancestral" of R . (Contributed by Scott Fenton, 17-Oct-2024)

Ref Expression
Assertion df-ttrcl t++ 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑚𝑛 ( 𝑓𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cR 𝑅
1 0 cttrcl t++ 𝑅
2 vx 𝑥
3 vy 𝑦
4 vn 𝑛
5 com ω
6 c1o 1o
7 5 6 cdif ( ω ∖ 1o )
8 vf 𝑓
9 8 cv 𝑓
10 4 cv 𝑛
11 10 csuc suc 𝑛
12 9 11 wfn 𝑓 Fn suc 𝑛
13 c0
14 13 9 cfv ( 𝑓 ‘ ∅ )
15 2 cv 𝑥
16 14 15 wceq ( 𝑓 ‘ ∅ ) = 𝑥
17 10 9 cfv ( 𝑓𝑛 )
18 3 cv 𝑦
19 17 18 wceq ( 𝑓𝑛 ) = 𝑦
20 16 19 wa ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 )
21 vm 𝑚
22 21 cv 𝑚
23 22 9 cfv ( 𝑓𝑚 )
24 22 csuc suc 𝑚
25 24 9 cfv ( 𝑓 ‘ suc 𝑚 )
26 23 25 0 wbr ( 𝑓𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 )
27 26 21 10 wral 𝑚𝑛 ( 𝑓𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 )
28 12 20 27 w3a ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑚𝑛 ( 𝑓𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) )
29 28 8 wex 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑚𝑛 ( 𝑓𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) )
30 29 4 7 wrex 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑚𝑛 ( 𝑓𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) )
31 30 2 3 copab { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑚𝑛 ( 𝑓𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) }
32 1 31 wceq t++ 𝑅 = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ∃ 𝑛 ∈ ( ω ∖ 1o ) ∃ 𝑓 ( 𝑓 Fn suc 𝑛 ∧ ( ( 𝑓 ‘ ∅ ) = 𝑥 ∧ ( 𝑓𝑛 ) = 𝑦 ) ∧ ∀ 𝑚𝑛 ( 𝑓𝑚 ) 𝑅 ( 𝑓 ‘ suc 𝑚 ) ) }