Metamath Proof Explorer


Definition df-ushgr

Description: Define the class of all undirected simple hypergraphs. An undirected simple hypergraph is a special (non-simple, multiple, multi-) hypergraph for which the edge function e is an injective (one-to-one) function into subsets of the set of vertices v , representing the (one or more) vertices incident to the edge. This definition corresponds to the definition of hypergraphs in section I.1 of Bollobas p. 7 (except that the empty set seems to be allowed to be an "edge") or section 1.10 of Diestel p. 27, where "E is a subset of [... the power set of V, that is the set of all subsets of V" resp. "the elements of E are nonempty subsets (of any cardinality) of V". (Contributed by AV, 19-Jan-2020) (Revised by AV, 8-Oct-2020)

Ref Expression
Assertion df-ushgr
|- USHGraph = { g | [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e -1-1-> ( ~P v \ { (/) } ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cushgr
 |-  USHGraph
1 vg
 |-  g
2 cvtx
 |-  Vtx
3 1 cv
 |-  g
4 3 2 cfv
 |-  ( Vtx ` g )
5 vv
 |-  v
6 ciedg
 |-  iEdg
7 3 6 cfv
 |-  ( iEdg ` g )
8 ve
 |-  e
9 8 cv
 |-  e
10 9 cdm
 |-  dom e
11 5 cv
 |-  v
12 11 cpw
 |-  ~P v
13 c0
 |-  (/)
14 13 csn
 |-  { (/) }
15 12 14 cdif
 |-  ( ~P v \ { (/) } )
16 10 15 9 wf1
 |-  e : dom e -1-1-> ( ~P v \ { (/) } )
17 16 8 7 wsbc
 |-  [. ( iEdg ` g ) / e ]. e : dom e -1-1-> ( ~P v \ { (/) } )
18 17 5 4 wsbc
 |-  [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e -1-1-> ( ~P v \ { (/) } )
19 18 1 cab
 |-  { g | [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e -1-1-> ( ~P v \ { (/) } ) }
20 0 19 wceq
 |-  USHGraph = { g | [. ( Vtx ` g ) / v ]. [. ( iEdg ` g ) / e ]. e : dom e -1-1-> ( ~P v \ { (/) } ) }