| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cusp |
|- UnifSp |
| 1 |
|
vf |
|- f |
| 2 |
|
cuss |
|- UnifSt |
| 3 |
1
|
cv |
|- f |
| 4 |
3 2
|
cfv |
|- ( UnifSt ` f ) |
| 5 |
|
cust |
|- UnifOn |
| 6 |
|
cbs |
|- Base |
| 7 |
3 6
|
cfv |
|- ( Base ` f ) |
| 8 |
7 5
|
cfv |
|- ( UnifOn ` ( Base ` f ) ) |
| 9 |
4 8
|
wcel |
|- ( UnifSt ` f ) e. ( UnifOn ` ( Base ` f ) ) |
| 10 |
|
ctopn |
|- TopOpen |
| 11 |
3 10
|
cfv |
|- ( TopOpen ` f ) |
| 12 |
|
cutop |
|- unifTop |
| 13 |
4 12
|
cfv |
|- ( unifTop ` ( UnifSt ` f ) ) |
| 14 |
11 13
|
wceq |
|- ( TopOpen ` f ) = ( unifTop ` ( UnifSt ` f ) ) |
| 15 |
9 14
|
wa |
|- ( ( UnifSt ` f ) e. ( UnifOn ` ( Base ` f ) ) /\ ( TopOpen ` f ) = ( unifTop ` ( UnifSt ` f ) ) ) |
| 16 |
15 1
|
cab |
|- { f | ( ( UnifSt ` f ) e. ( UnifOn ` ( Base ` f ) ) /\ ( TopOpen ` f ) = ( unifTop ` ( UnifSt ` f ) ) ) } |
| 17 |
0 16
|
wceq |
|- UnifSp = { f | ( ( UnifSt ` f ) e. ( UnifOn ` ( Base ` f ) ) /\ ( TopOpen ` f ) = ( unifTop ` ( UnifSt ` f ) ) ) } |