| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cusp |
⊢ UnifSp |
| 1 |
|
vf |
⊢ 𝑓 |
| 2 |
|
cuss |
⊢ UnifSt |
| 3 |
1
|
cv |
⊢ 𝑓 |
| 4 |
3 2
|
cfv |
⊢ ( UnifSt ‘ 𝑓 ) |
| 5 |
|
cust |
⊢ UnifOn |
| 6 |
|
cbs |
⊢ Base |
| 7 |
3 6
|
cfv |
⊢ ( Base ‘ 𝑓 ) |
| 8 |
7 5
|
cfv |
⊢ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) |
| 9 |
4 8
|
wcel |
⊢ ( UnifSt ‘ 𝑓 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) |
| 10 |
|
ctopn |
⊢ TopOpen |
| 11 |
3 10
|
cfv |
⊢ ( TopOpen ‘ 𝑓 ) |
| 12 |
|
cutop |
⊢ unifTop |
| 13 |
4 12
|
cfv |
⊢ ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) |
| 14 |
11 13
|
wceq |
⊢ ( TopOpen ‘ 𝑓 ) = ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) |
| 15 |
9 14
|
wa |
⊢ ( ( UnifSt ‘ 𝑓 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) ∧ ( TopOpen ‘ 𝑓 ) = ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) ) |
| 16 |
15 1
|
cab |
⊢ { 𝑓 ∣ ( ( UnifSt ‘ 𝑓 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) ∧ ( TopOpen ‘ 𝑓 ) = ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) ) } |
| 17 |
0 16
|
wceq |
⊢ UnifSp = { 𝑓 ∣ ( ( UnifSt ‘ 𝑓 ) ∈ ( UnifOn ‘ ( Base ‘ 𝑓 ) ) ∧ ( TopOpen ‘ 𝑓 ) = ( unifTop ‘ ( UnifSt ‘ 𝑓 ) ) ) } |