Step |
Hyp |
Ref |
Expression |
0 |
|
cvc |
|- CVecOLD |
1 |
|
vg |
|- g |
2 |
|
vs |
|- s |
3 |
1
|
cv |
|- g |
4 |
|
cablo |
|- AbelOp |
5 |
3 4
|
wcel |
|- g e. AbelOp |
6 |
2
|
cv |
|- s |
7 |
|
cc |
|- CC |
8 |
3
|
crn |
|- ran g |
9 |
7 8
|
cxp |
|- ( CC X. ran g ) |
10 |
9 8 6
|
wf |
|- s : ( CC X. ran g ) --> ran g |
11 |
|
vx |
|- x |
12 |
|
c1 |
|- 1 |
13 |
11
|
cv |
|- x |
14 |
12 13 6
|
co |
|- ( 1 s x ) |
15 |
14 13
|
wceq |
|- ( 1 s x ) = x |
16 |
|
vy |
|- y |
17 |
|
vz |
|- z |
18 |
16
|
cv |
|- y |
19 |
17
|
cv |
|- z |
20 |
13 19 3
|
co |
|- ( x g z ) |
21 |
18 20 6
|
co |
|- ( y s ( x g z ) ) |
22 |
18 13 6
|
co |
|- ( y s x ) |
23 |
18 19 6
|
co |
|- ( y s z ) |
24 |
22 23 3
|
co |
|- ( ( y s x ) g ( y s z ) ) |
25 |
21 24
|
wceq |
|- ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) |
26 |
25 17 8
|
wral |
|- A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) |
27 |
|
caddc |
|- + |
28 |
18 19 27
|
co |
|- ( y + z ) |
29 |
28 13 6
|
co |
|- ( ( y + z ) s x ) |
30 |
19 13 6
|
co |
|- ( z s x ) |
31 |
22 30 3
|
co |
|- ( ( y s x ) g ( z s x ) ) |
32 |
29 31
|
wceq |
|- ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) |
33 |
|
cmul |
|- x. |
34 |
18 19 33
|
co |
|- ( y x. z ) |
35 |
34 13 6
|
co |
|- ( ( y x. z ) s x ) |
36 |
18 30 6
|
co |
|- ( y s ( z s x ) ) |
37 |
35 36
|
wceq |
|- ( ( y x. z ) s x ) = ( y s ( z s x ) ) |
38 |
32 37
|
wa |
|- ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) |
39 |
38 17 7
|
wral |
|- A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) |
40 |
26 39
|
wa |
|- ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) |
41 |
40 16 7
|
wral |
|- A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) |
42 |
15 41
|
wa |
|- ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) |
43 |
42 11 8
|
wral |
|- A. x e. ran g ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) |
44 |
5 10 43
|
w3a |
|- ( g e. AbelOp /\ s : ( CC X. ran g ) --> ran g /\ A. x e. ran g ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) ) |
45 |
44 1 2
|
copab |
|- { <. g , s >. | ( g e. AbelOp /\ s : ( CC X. ran g ) --> ran g /\ A. x e. ran g ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) ) } |
46 |
0 45
|
wceq |
|- CVecOLD = { <. g , s >. | ( g e. AbelOp /\ s : ( CC X. ran g ) --> ran g /\ A. x e. ran g ( ( 1 s x ) = x /\ A. y e. CC ( A. z e. ran g ( y s ( x g z ) ) = ( ( y s x ) g ( y s z ) ) /\ A. z e. CC ( ( ( y + z ) s x ) = ( ( y s x ) g ( z s x ) ) /\ ( ( y x. z ) s x ) = ( y s ( z s x ) ) ) ) ) ) } |