Metamath Proof Explorer


Definition df-vc

Description: Define the class of all complex vector spaces. (Contributed by NM, 3-Nov-2006) (New usage is discouraged.)

Ref Expression
Assertion df-vc CVecOLD = { ⟨ 𝑔 , 𝑠 ⟩ ∣ ( 𝑔 ∈ AbelOp ∧ 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) }

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvc CVecOLD
1 vg 𝑔
2 vs 𝑠
3 1 cv 𝑔
4 cablo AbelOp
5 3 4 wcel 𝑔 ∈ AbelOp
6 2 cv 𝑠
7 cc
8 3 crn ran 𝑔
9 7 8 cxp ( ℂ × ran 𝑔 )
10 9 8 6 wf 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔
11 vx 𝑥
12 c1 1
13 11 cv 𝑥
14 12 13 6 co ( 1 𝑠 𝑥 )
15 14 13 wceq ( 1 𝑠 𝑥 ) = 𝑥
16 vy 𝑦
17 vz 𝑧
18 16 cv 𝑦
19 17 cv 𝑧
20 13 19 3 co ( 𝑥 𝑔 𝑧 )
21 18 20 6 co ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) )
22 18 13 6 co ( 𝑦 𝑠 𝑥 )
23 18 19 6 co ( 𝑦 𝑠 𝑧 )
24 22 23 3 co ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) )
25 21 24 wceq ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) )
26 25 17 8 wral 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) )
27 caddc +
28 18 19 27 co ( 𝑦 + 𝑧 )
29 28 13 6 co ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 )
30 19 13 6 co ( 𝑧 𝑠 𝑥 )
31 22 30 3 co ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) )
32 29 31 wceq ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) )
33 cmul ·
34 18 19 33 co ( 𝑦 · 𝑧 )
35 34 13 6 co ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 )
36 18 30 6 co ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) )
37 35 36 wceq ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) )
38 32 37 wa ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) )
39 38 17 7 wral 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) )
40 26 39 wa ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) )
41 40 16 7 wral 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) )
42 15 41 wa ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) )
43 42 11 8 wral 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) )
44 5 10 43 w3a ( 𝑔 ∈ AbelOp ∧ 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) )
45 44 1 2 copab { ⟨ 𝑔 , 𝑠 ⟩ ∣ ( 𝑔 ∈ AbelOp ∧ 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) }
46 0 45 wceq CVecOLD = { ⟨ 𝑔 , 𝑠 ⟩ ∣ ( 𝑔 ∈ AbelOp ∧ 𝑠 : ( ℂ × ran 𝑔 ) ⟶ ran 𝑔 ∧ ∀ 𝑥 ∈ ran 𝑔 ( ( 1 𝑠 𝑥 ) = 𝑥 ∧ ∀ 𝑦 ∈ ℂ ( ∀ 𝑧 ∈ ran 𝑔 ( 𝑦 𝑠 ( 𝑥 𝑔 𝑧 ) ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑦 𝑠 𝑧 ) ) ∧ ∀ 𝑧 ∈ ℂ ( ( ( 𝑦 + 𝑧 ) 𝑠 𝑥 ) = ( ( 𝑦 𝑠 𝑥 ) 𝑔 ( 𝑧 𝑠 𝑥 ) ) ∧ ( ( 𝑦 · 𝑧 ) 𝑠 𝑥 ) = ( 𝑦 𝑠 ( 𝑧 𝑠 𝑥 ) ) ) ) ) ) }