| Step |
Hyp |
Ref |
Expression |
| 0 |
|
cvma |
|- Lam |
| 1 |
|
vx |
|- x |
| 2 |
|
cn |
|- NN |
| 3 |
|
vp |
|- p |
| 4 |
|
cprime |
|- Prime |
| 5 |
3
|
cv |
|- p |
| 6 |
|
cdvds |
|- || |
| 7 |
1
|
cv |
|- x |
| 8 |
5 7 6
|
wbr |
|- p || x |
| 9 |
8 3 4
|
crab |
|- { p e. Prime | p || x } |
| 10 |
|
vs |
|- s |
| 11 |
|
chash |
|- # |
| 12 |
10
|
cv |
|- s |
| 13 |
12 11
|
cfv |
|- ( # ` s ) |
| 14 |
|
c1 |
|- 1 |
| 15 |
13 14
|
wceq |
|- ( # ` s ) = 1 |
| 16 |
|
clog |
|- log |
| 17 |
12
|
cuni |
|- U. s |
| 18 |
17 16
|
cfv |
|- ( log ` U. s ) |
| 19 |
|
cc0 |
|- 0 |
| 20 |
15 18 19
|
cif |
|- if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) |
| 21 |
10 9 20
|
csb |
|- [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) |
| 22 |
1 2 21
|
cmpt |
|- ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) |
| 23 |
0 22
|
wceq |
|- Lam = ( x e. NN |-> [_ { p e. Prime | p || x } / s ]_ if ( ( # ` s ) = 1 , ( log ` U. s ) , 0 ) ) |