Step |
Hyp |
Ref |
Expression |
0 |
|
cR |
|- R |
1 |
|
cA |
|- A |
2 |
|
cF |
|- F |
3 |
1 0 2
|
cwrecs |
|- wrecs ( R , A , F ) |
4 |
|
vf |
|- f |
5 |
|
vx |
|- x |
6 |
4
|
cv |
|- f |
7 |
5
|
cv |
|- x |
8 |
6 7
|
wfn |
|- f Fn x |
9 |
7 1
|
wss |
|- x C_ A |
10 |
|
vy |
|- y |
11 |
10
|
cv |
|- y |
12 |
1 0 11
|
cpred |
|- Pred ( R , A , y ) |
13 |
12 7
|
wss |
|- Pred ( R , A , y ) C_ x |
14 |
13 10 7
|
wral |
|- A. y e. x Pred ( R , A , y ) C_ x |
15 |
9 14
|
wa |
|- ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) |
16 |
11 6
|
cfv |
|- ( f ` y ) |
17 |
6 12
|
cres |
|- ( f |` Pred ( R , A , y ) ) |
18 |
17 2
|
cfv |
|- ( F ` ( f |` Pred ( R , A , y ) ) ) |
19 |
16 18
|
wceq |
|- ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) |
20 |
19 10 7
|
wral |
|- A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) |
21 |
8 15 20
|
w3a |
|- ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) |
22 |
21 5
|
wex |
|- E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) |
23 |
22 4
|
cab |
|- { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) } |
24 |
23
|
cuni |
|- U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) } |
25 |
3 24
|
wceq |
|- wrecs ( R , A , F ) = U. { f | E. x ( f Fn x /\ ( x C_ A /\ A. y e. x Pred ( R , A , y ) C_ x ) /\ A. y e. x ( f ` y ) = ( F ` ( f |` Pred ( R , A , y ) ) ) ) } |