Metamath Proof Explorer


Theorem wfr2

Description: The Principle of Well-Founded Recursion, part 2 of 3. Next, we show that the value of F at any X e. A is G recursively applied to all "previous" values of F . (Contributed by Scott Fenton, 18-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses wfr2.1
|- R We A
wfr2.2
|- R Se A
wfr2.3
|- F = wrecs ( R , A , G )
Assertion wfr2
|- ( X e. A -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) )

Proof

Step Hyp Ref Expression
1 wfr2.1
 |-  R We A
2 wfr2.2
 |-  R Se A
3 wfr2.3
 |-  F = wrecs ( R , A , G )
4 eqid
 |-  ( F u. { <. x , ( G ` ( F |` Pred ( R , A , x ) ) ) >. } ) = ( F u. { <. x , ( G ` ( F |` Pred ( R , A , x ) ) ) >. } )
5 1 2 3 4 wfrlem16
 |-  dom F = A
6 5 eleq2i
 |-  ( X e. dom F <-> X e. A )
7 1 2 3 wfr2a
 |-  ( X e. dom F -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) )
8 6 7 sylbir
 |-  ( X e. A -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) )