Step |
Hyp |
Ref |
Expression |
1 |
|
wfr2.1 |
|- F = wrecs ( R , A , G ) |
2 |
1
|
wfr1 |
|- ( ( R We A /\ R Se A ) -> F Fn A ) |
3 |
2
|
fndmd |
|- ( ( R We A /\ R Se A ) -> dom F = A ) |
4 |
3
|
eleq2d |
|- ( ( R We A /\ R Se A ) -> ( X e. dom F <-> X e. A ) ) |
5 |
4
|
biimpar |
|- ( ( ( R We A /\ R Se A ) /\ X e. A ) -> X e. dom F ) |
6 |
1
|
wfr2a |
|- ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |
7 |
5 6
|
syldan |
|- ( ( ( R We A /\ R Se A ) /\ X e. A ) -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |