Step |
Hyp |
Ref |
Expression |
1 |
|
wfrfun.1 |
|- F = wrecs ( R , A , G ) |
2 |
|
wefr |
|- ( R We A -> R Fr A ) |
3 |
2
|
adantr |
|- ( ( R We A /\ R Se A ) -> R Fr A ) |
4 |
|
weso |
|- ( R We A -> R Or A ) |
5 |
|
sopo |
|- ( R Or A -> R Po A ) |
6 |
4 5
|
syl |
|- ( R We A -> R Po A ) |
7 |
6
|
adantr |
|- ( ( R We A /\ R Se A ) -> R Po A ) |
8 |
|
simpr |
|- ( ( R We A /\ R Se A ) -> R Se A ) |
9 |
3 7 8
|
3jca |
|- ( ( R We A /\ R Se A ) -> ( R Fr A /\ R Po A /\ R Se A ) ) |
10 |
|
df-wrecs |
|- wrecs ( R , A , G ) = frecs ( R , A , ( G o. 2nd ) ) |
11 |
1 10
|
eqtri |
|- F = frecs ( R , A , ( G o. 2nd ) ) |
12 |
11
|
fpr2a |
|- ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( X ( G o. 2nd ) ( F |` Pred ( R , A , X ) ) ) ) |
13 |
9 12
|
sylan |
|- ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( X ( G o. 2nd ) ( F |` Pred ( R , A , X ) ) ) ) |
14 |
|
simpr |
|- ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> X e. dom F ) |
15 |
1
|
wfrresex |
|- ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( F |` Pred ( R , A , X ) ) e. _V ) |
16 |
14 15
|
opco2 |
|- ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( X ( G o. 2nd ) ( F |` Pred ( R , A , X ) ) ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |
17 |
13 16
|
eqtrd |
|- ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) |