Metamath Proof Explorer


Theorem wfr2a

Description: A weak version of wfr2 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Scott Fenton, 30-Jul-2020) (Proof shortened by Scott Fenton, 18-Nov-2024)

Ref Expression
Hypothesis wfrfun.1
|- F = wrecs ( R , A , G )
Assertion wfr2a
|- ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) )

Proof

Step Hyp Ref Expression
1 wfrfun.1
 |-  F = wrecs ( R , A , G )
2 wefr
 |-  ( R We A -> R Fr A )
3 2 adantr
 |-  ( ( R We A /\ R Se A ) -> R Fr A )
4 weso
 |-  ( R We A -> R Or A )
5 sopo
 |-  ( R Or A -> R Po A )
6 4 5 syl
 |-  ( R We A -> R Po A )
7 6 adantr
 |-  ( ( R We A /\ R Se A ) -> R Po A )
8 simpr
 |-  ( ( R We A /\ R Se A ) -> R Se A )
9 3 7 8 3jca
 |-  ( ( R We A /\ R Se A ) -> ( R Fr A /\ R Po A /\ R Se A ) )
10 df-wrecs
 |-  wrecs ( R , A , G ) = frecs ( R , A , ( G o. 2nd ) )
11 1 10 eqtri
 |-  F = frecs ( R , A , ( G o. 2nd ) )
12 11 fpr2a
 |-  ( ( ( R Fr A /\ R Po A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( X ( G o. 2nd ) ( F |` Pred ( R , A , X ) ) ) )
13 9 12 sylan
 |-  ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( X ( G o. 2nd ) ( F |` Pred ( R , A , X ) ) ) )
14 simpr
 |-  ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> X e. dom F )
15 1 wfrresex
 |-  ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( F |` Pred ( R , A , X ) ) e. _V )
16 14 15 opco2
 |-  ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( X ( G o. 2nd ) ( F |` Pred ( R , A , X ) ) ) = ( G ` ( F |` Pred ( R , A , X ) ) ) )
17 13 16 eqtrd
 |-  ( ( ( R We A /\ R Se A ) /\ X e. dom F ) -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) )