Metamath Proof Explorer


Theorem wfr2a

Description: A weak version of wfr2 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Scott Fenton, 30-Jul-2020)

Ref Expression
Hypotheses wfr2a.1
|- R We A
wfr2a.2
|- R Se A
wfr2a.3
|- F = wrecs ( R , A , G )
Assertion wfr2a
|- ( X e. dom F -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) )

Proof

Step Hyp Ref Expression
1 wfr2a.1
 |-  R We A
2 wfr2a.2
 |-  R Se A
3 wfr2a.3
 |-  F = wrecs ( R , A , G )
4 fveq2
 |-  ( x = X -> ( F ` x ) = ( F ` X ) )
5 predeq3
 |-  ( x = X -> Pred ( R , A , x ) = Pred ( R , A , X ) )
6 5 reseq2d
 |-  ( x = X -> ( F |` Pred ( R , A , x ) ) = ( F |` Pred ( R , A , X ) ) )
7 6 fveq2d
 |-  ( x = X -> ( G ` ( F |` Pred ( R , A , x ) ) ) = ( G ` ( F |` Pred ( R , A , X ) ) ) )
8 4 7 eqeq12d
 |-  ( x = X -> ( ( F ` x ) = ( G ` ( F |` Pred ( R , A , x ) ) ) <-> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) ) )
9 1 2 3 wfrlem12
 |-  ( x e. dom F -> ( F ` x ) = ( G ` ( F |` Pred ( R , A , x ) ) ) )
10 8 9 vtoclga
 |-  ( X e. dom F -> ( F ` X ) = ( G ` ( F |` Pred ( R , A , X ) ) ) )