Step |
Hyp |
Ref |
Expression |
1 |
|
wfrfun.1 |
⊢ 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 ) |
2 |
|
wefr |
⊢ ( 𝑅 We 𝐴 → 𝑅 Fr 𝐴 ) |
3 |
2
|
adantr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Fr 𝐴 ) |
4 |
|
weso |
⊢ ( 𝑅 We 𝐴 → 𝑅 Or 𝐴 ) |
5 |
|
sopo |
⊢ ( 𝑅 Or 𝐴 → 𝑅 Po 𝐴 ) |
6 |
4 5
|
syl |
⊢ ( 𝑅 We 𝐴 → 𝑅 Po 𝐴 ) |
7 |
6
|
adantr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Po 𝐴 ) |
8 |
|
simpr |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → 𝑅 Se 𝐴 ) |
9 |
3 7 8
|
3jca |
⊢ ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) → ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ) |
10 |
|
df-wrecs |
⊢ wrecs ( 𝑅 , 𝐴 , 𝐺 ) = frecs ( 𝑅 , 𝐴 , ( 𝐺 ∘ 2nd ) ) |
11 |
1 10
|
eqtri |
⊢ 𝐹 = frecs ( 𝑅 , 𝐴 , ( 𝐺 ∘ 2nd ) ) |
12 |
11
|
fpr2a |
⊢ ( ( ( 𝑅 Fr 𝐴 ∧ 𝑅 Po 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 ( 𝐺 ∘ 2nd ) ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
13 |
9 12
|
sylan |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝑋 ( 𝐺 ∘ 2nd ) ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
14 |
|
simpr |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → 𝑋 ∈ dom 𝐹 ) |
15 |
1
|
wfrresex |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ∈ V ) |
16 |
14 15
|
opco2 |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝑋 ( 𝐺 ∘ 2nd ) ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |
17 |
13 16
|
eqtrd |
⊢ ( ( ( 𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹 ‘ 𝑋 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) ) |