Metamath Proof Explorer


Theorem wfr2

Description: The Principle of Well-Ordered Recursion, part 2 of 3. Next, we show that the value of F at any X e. A is G applied to all "previous" values of F . (Contributed by Scott Fenton, 18-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypothesis wfr2.1 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
Assertion wfr2 ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ 𝑋𝐴 ) → ( 𝐹𝑋 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 wfr2.1 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
2 1 wfr1 ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → 𝐹 Fn 𝐴 )
3 2 fndmd ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → dom 𝐹 = 𝐴 )
4 3 eleq2d ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) → ( 𝑋 ∈ dom 𝐹𝑋𝐴 ) )
5 4 biimpar ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ 𝑋𝐴 ) → 𝑋 ∈ dom 𝐹 )
6 1 wfr2a ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ 𝑋 ∈ dom 𝐹 ) → ( 𝐹𝑋 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) )
7 5 6 syldan ( ( ( 𝑅 We 𝐴𝑅 Se 𝐴 ) ∧ 𝑋𝐴 ) → ( 𝐹𝑋 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) )