Metamath Proof Explorer


Theorem wfr2

Description: The Principle of Well-Founded Recursion, part 2 of 3. Next, we show that the value of F at any X e. A is G recursively applied to all "previous" values of F . (Contributed by Scott Fenton, 18-Apr-2011) (Revised by Mario Carneiro, 26-Jun-2015)

Ref Expression
Hypotheses wfr2.1 𝑅 We 𝐴
wfr2.2 𝑅 Se 𝐴
wfr2.3 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
Assertion wfr2 ( 𝑋𝐴 → ( 𝐹𝑋 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 wfr2.1 𝑅 We 𝐴
2 wfr2.2 𝑅 Se 𝐴
3 wfr2.3 𝐹 = wrecs ( 𝑅 , 𝐴 , 𝐺 )
4 eqid ( 𝐹 ∪ { ⟨ 𝑥 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ) ⟩ } ) = ( 𝐹 ∪ { ⟨ 𝑥 , ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑥 ) ) ) ⟩ } )
5 1 2 3 4 wfrlem16 dom 𝐹 = 𝐴
6 5 eleq2i ( 𝑋 ∈ dom 𝐹𝑋𝐴 )
7 1 2 3 wfr2a ( 𝑋 ∈ dom 𝐹 → ( 𝐹𝑋 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) )
8 6 7 sylbir ( 𝑋𝐴 → ( 𝐹𝑋 ) = ( 𝐺 ‘ ( 𝐹 ↾ Pred ( 𝑅 , 𝐴 , 𝑋 ) ) ) )