Metamath Proof Explorer


Theorem wfr2a

Description: A weak version of wfr2 which is useful for proofs that avoid the Axiom of Replacement. (Contributed by Scott Fenton, 30-Jul-2020) (Proof shortened by Scott Fenton, 18-Nov-2024)

Ref Expression
Hypothesis wfrfun.1 F = wrecs R A G
Assertion wfr2a R We A R Se A X dom F F X = G F Pred R A X

Proof

Step Hyp Ref Expression
1 wfrfun.1 F = wrecs R A G
2 wefr R We A R Fr A
3 2 adantr R We A R Se A R Fr A
4 weso R We A R Or A
5 sopo R Or A R Po A
6 4 5 syl R We A R Po A
7 6 adantr R We A R Se A R Po A
8 simpr R We A R Se A R Se A
9 3 7 8 3jca R We A R Se A R Fr A R Po A R Se A
10 df-wrecs wrecs R A G = frecs R A G 2 nd
11 1 10 eqtri F = frecs R A G 2 nd
12 11 fpr2a R Fr A R Po A R Se A X dom F F X = X G 2 nd F Pred R A X
13 9 12 sylan R We A R Se A X dom F F X = X G 2 nd F Pred R A X
14 simpr R We A R Se A X dom F X dom F
15 1 wfrresex R We A R Se A X dom F F Pred R A X V
16 14 15 opco2 R We A R Se A X dom F X G 2 nd F Pred R A X = G F Pred R A X
17 13 16 eqtrd R We A R Se A X dom F F X = G F Pred R A X