Metamath Proof Explorer


Theorem wfrresex

Description: Show without using the axiom of replacement that the restriction of the well-ordered recursion generator to a predecessor class is a set. (Contributed by Scott Fenton, 18-Nov-2024)

Ref Expression
Hypothesis wfrfun.1 F = wrecs R A G
Assertion wfrresex R We A R Se A X dom F F Pred R A X V

Proof

Step Hyp Ref Expression
1 wfrfun.1 F = wrecs R A G
2 wefr R We A R Fr A
3 2 adantr R We A R Se A R Fr A
4 weso R We A R Or A
5 sopo R Or A R Po A
6 4 5 syl R We A R Po A
7 6 adantr R We A R Se A R Po A
8 simpr R We A R Se A R Se A
9 3 7 8 3jca R We A R Se A R Fr A R Po A R Se A
10 df-wrecs wrecs R A G = frecs R A G 2 nd
11 1 10 eqtri F = frecs R A G 2 nd
12 11 fprresex R Fr A R Po A R Se A X dom F F Pred R A X V
13 9 12 sylan R We A R Se A X dom F F Pred R A X V