Description: Define the set of all walks (in an undirected graph) of a fixed length n as words over the set of vertices. Such a word corresponds to the sequence p(0) p(1) ... p(n) of the vertices in a walk p(0) e(f(1)) p(1) e(f(2)) ... p(n-1) e(f(n)) p(n) as defined in df-wlks . (Contributed by Alexander van der Vekens, 15-Jul-2018) (Revised by AV, 8-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-wwlksn | |- WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cwwlksn | |- WWalksN |
|
| 1 | vn | |- n |
|
| 2 | cn0 | |- NN0 |
|
| 3 | vg | |- g |
|
| 4 | cvv | |- _V |
|
| 5 | vw | |- w |
|
| 6 | cwwlks | |- WWalks |
|
| 7 | 3 | cv | |- g |
| 8 | 7 6 | cfv | |- ( WWalks ` g ) |
| 9 | chash | |- # |
|
| 10 | 5 | cv | |- w |
| 11 | 10 9 | cfv | |- ( # ` w ) |
| 12 | 1 | cv | |- n |
| 13 | caddc | |- + |
|
| 14 | c1 | |- 1 |
|
| 15 | 12 14 13 | co | |- ( n + 1 ) |
| 16 | 11 15 | wceq | |- ( # ` w ) = ( n + 1 ) |
| 17 | 16 5 8 | crab | |- { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } |
| 18 | 1 3 2 4 17 | cmpo | |- ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) |
| 19 | 0 18 | wceq | |- WWalksN = ( n e. NN0 , g e. _V |-> { w e. ( WWalks ` g ) | ( # ` w ) = ( n + 1 ) } ) |