Description: Define the subring of integral elements in a ring. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-zrng | |- ZRing = ( r e. _V |-> ( r IntgRing ran ( ZRHom ` r ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | czr | |- ZRing |
|
| 1 | vr | |- r |
|
| 2 | cvv | |- _V |
|
| 3 | 1 | cv | |- r |
| 4 | cirng | |- IntgRing |
|
| 5 | czrh | |- ZRHom |
|
| 6 | 3 5 | cfv | |- ( ZRHom ` r ) |
| 7 | 6 | crn | |- ran ( ZRHom ` r ) |
| 8 | 3 7 4 | co | |- ( r IntgRing ran ( ZRHom ` r ) ) |
| 9 | 1 2 8 | cmpt | |- ( r e. _V |-> ( r IntgRing ran ( ZRHom ` r ) ) ) |
| 10 | 0 9 | wceq | |- ZRing = ( r e. _V |-> ( r IntgRing ran ( ZRHom ` r ) ) ) |