Description: Define the subring of integral elements in a ring. (Contributed by Mario Carneiro, 2-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-zrng | ⊢ ZRing = ( 𝑟 ∈ V ↦ ( 𝑟 IntgRing ran ( ℤRHom ‘ 𝑟 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | czr | ⊢ ZRing | |
| 1 | vr | ⊢ 𝑟 | |
| 2 | cvv | ⊢ V | |
| 3 | 1 | cv | ⊢ 𝑟 |
| 4 | cirng | ⊢ IntgRing | |
| 5 | czrh | ⊢ ℤRHom | |
| 6 | 3 5 | cfv | ⊢ ( ℤRHom ‘ 𝑟 ) |
| 7 | 6 | crn | ⊢ ran ( ℤRHom ‘ 𝑟 ) |
| 8 | 3 7 4 | co | ⊢ ( 𝑟 IntgRing ran ( ℤRHom ‘ 𝑟 ) ) |
| 9 | 1 2 8 | cmpt | ⊢ ( 𝑟 ∈ V ↦ ( 𝑟 IntgRing ran ( ℤRHom ‘ 𝑟 ) ) ) |
| 10 | 0 9 | wceq | ⊢ ZRing = ( 𝑟 ∈ V ↦ ( 𝑟 IntgRing ran ( ℤRHom ‘ 𝑟 ) ) ) |