Metamath Proof Explorer


Theorem dfcnvrefrel4

Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024)

Ref Expression
Assertion dfcnvrefrel4
|- ( CnvRefRel R <-> ( R C_ _I /\ Rel R ) )

Proof

Step Hyp Ref Expression
1 df-cnvrefrel
 |-  ( CnvRefRel R <-> ( ( R i^i ( dom R X. ran R ) ) C_ ( _I i^i ( dom R X. ran R ) ) /\ Rel R ) )
2 cnvref4
 |-  ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) C_ ( _I i^i ( dom R X. ran R ) ) <-> R C_ _I ) )
3 1 2 bianim
 |-  ( CnvRefRel R <-> ( R C_ _I /\ Rel R ) )