Description: Alternate definition of the converse reflexive relation predicate. (Contributed by Peter Mazsa, 25-May-2024)
Ref | Expression | ||
---|---|---|---|
Assertion | dfcnvrefrel4 | |- ( CnvRefRel R <-> ( R C_ _I /\ Rel R ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-cnvrefrel | |- ( CnvRefRel R <-> ( ( R i^i ( dom R X. ran R ) ) C_ ( _I i^i ( dom R X. ran R ) ) /\ Rel R ) ) |
|
2 | cnvref4 | |- ( Rel R -> ( ( R i^i ( dom R X. ran R ) ) C_ ( _I i^i ( dom R X. ran R ) ) <-> R C_ _I ) ) |
|
3 | 1 2 | bianim | |- ( CnvRefRel R <-> ( R C_ _I /\ Rel R ) ) |